共查询到14条相似文献,搜索用时 111 毫秒
1.
决策树学习算法ID3的研究 总被引:28,自引:0,他引:28
ID3是决策树学习的核心算法,为此详细叙述了决策树表示方法和ID3决策树学习算法,特别说明了决策属性的选取法则。通过一个学习实例给出该算法第一选取决策属性的详细过程,并且对该算法进行了讨论,一般情况下,ID3算法可以找出最优决策树。 相似文献
2.
3.
决策树ID3算法的改进 总被引:3,自引:0,他引:3
本文根据ID3算法中信息增益计算原理的特点,利用数学上等价无穷小的性质提出一种新的改进的ID3算法,减少了信息增益的计算量,进而提高ID3算法中信息增益的计算效率。与原ID3算法相比,改进的ID3算法在构造决策树时具有相同的准确率和更高的计算速度。 相似文献
4.
本文通过数据挖掘对传统ID3决策树分类算法及性能进行分析研究,‘利用高等数学中的微分理论知识,改进和优化了ID3算法中的运算速度和选择测试属性偏向问题,并进一步给出了改进算法的伪代码. 相似文献
5.
决策树算法是数据挖掘中常用的重要方法,广泛应用于分类和预测。本文对决策树的ID3算法的基本思想进行了介绍,通过应用实例说明了构造决策树的实现过程。 相似文献
6.
基于属性值的ID3算法改进 总被引:5,自引:1,他引:5
ID3算法是数据挖掘中经典的决策树分类算法.针对ID3算法所存在的属性取值偏向问题及只时较小的数据集有效的缺点提出改进.当训练样本各属性的取值个数相差较大的情况下,在计算划分标准时引入了属性取值个数N,在一定程度上克服了ID3算法易偏向于取值较多的属性这一缺陷,得到了结构更简洁的、较为理想的决策树.采用先剪枝的方法实现改进,设定一个阈值避免决策树的完全生长,在保持分类准确率的同时,大大地提高了算法的速度.实验结果表明,改进后的算法(AVID3)对许多数据集比传统ID3算法更有效. 相似文献
7.
8.
ID3算法的一种改进算法 总被引:33,自引:5,他引:33
决策树是归纳学习和数据挖掘的重要方法,通常用来形成分类器和预测模型。ID3算法是决策树中的核心算法,文章针对ID3算法倾向于取值较多的属性的缺点,引进用户兴趣度对ID3算法作了改进,并通过实验对改进前后的算法进行了比较,实验表明,改进后的算法是有效的。 相似文献
9.
ID3算法是目前最具有影响力的一种决策树构造算法,但仍然有许多的缺点,例如在多值属性偏向方面的问题、计算时间复杂度高、效率不高等问题。提出了一种基于斯皮尔曼等级相关系数的ID3决策树构造优化算法,利用相关系数克服了ID3算法在多值属性偏向方面的问题,在一定程度上提高了算法的分类准确率。利用相关数学知识对计算过程进行了化简,减少了ID3算法在log运算上的运行时间。最后通过实验验证了优化后的算法是可行的,且在准确率和运行速度方面都有更好的表现。 相似文献
10.
基于属性重要度的ID3改进算法 总被引:8,自引:0,他引:8
ID3算法是数据挖掘中最经典的分类算法.该算法偏向于选择取值较多的属性,而属性值较多的属性不总是重要的,从而影响了分类预测的高效性.通过对ID3算法的研究,依据属性重要度粗糙集理论的思想,对经典的ID3算法做了相应的改进,改进后的ID3算法(AIID3),提高了算法的决策效率.最后的实例及应用表明,改进的算法更有效,更快速. 相似文献
11.
ID3算法是决策树中影响最大的算法之一,它以信息增益为标准选择决策树的测试属性。这种算法存在不足之处,在选择合适的测试属性时,倾向于选择取值较多的属性,而在实际应用中,取值较多的属性未必是重要的。针对此算法的不足,本文提出了一种对增益修正的 ID3算法,为改善 ID3的多值偏向问题提供了一种有效途径。通过理论分析和实验证明,这种算法能较好地解决多值倾向的问题。 相似文献
12.
针对传统ID3算法计算过程复杂以及存在信息冗余的问题,提出了一种改进算法——基于粗糙集属性约简的简化ID3算法.该算法利用粗糙集中属性约简的性质删掉了系统中多余的知识,在保证同样的分类能力下使得分类系统更简洁,同时借助了泰勒公式对熵公式进行化简,使得计算更简便,然后把改进的算法用到实例中去,并用相关数据库上的大量数据编程进行仿真实验,最后得出的仿真结果证明了所提出算法的正确性与可行性,不仅能够有效降低信息重复度,减少了冗余规则,还保证了算法精度,同时为把ID3算法更好地应用到现实生活实例中提供了一定的参考价值. 相似文献
13.
ID3算法是应用最多的决策树生成算法,针对该算法执行效率不高以及取值偏向性的缺点,提出了一种通过降低求信息熵的计算时间和设置权值的改进算法。理论分析和实验结果表明,改进算法在准确度和执行效率方面都比ID3算法更高。 相似文献