首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用等温压缩试验,在变形温度为600~1050℃、应变速率为0.002~0.2s-1的条件下,研究了粉末冶金Ti-47.5Al-2.5V-1.0Cr合金的高温压缩性能与高温变形行为.结果表明:合金在高温压缩变形时,屈服强度随变形温度的升高、应变速率的降低而降低,塑性趋于升高.合金在高温塑性变形时,峰值流变应力、应变速率和变形温度之间较好地满足双曲正弦函数形式修正的Arrhenius关系,说明其变形受热激活控制.在800~1050℃/0.002~0.2s-1范围内,合金应变敏感系数m为0.152,高温变形激活能Q为376kJ.mol-1.  相似文献   

2.
Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金高温变形动态再结晶行为   总被引:1,自引:0,他引:1  
采用热模拟实验研究了变形参数(应变量、变形温度、应变速率)对Ti-46.5Al-2.5V-1.0Cr-0.3Ni合金微观变形组织的影响.研究结果表明,在应变量逐渐增加的热压缩变形过程中,一定变形量后开始出现层片弯曲、折曲或破碎,随着应变量的增加,动态再结晶形成的等轴晶粒增多,残余层片团减少.变形温度对钛铝合金的变形组织有着显著影响,提高热变形温度,有利于合金中的动态再结晶以及变形组织的均匀化,降低残余层片团的体积分数.较低的应变速率能促进变形时的动态再结晶,有利于提高变形组织的均匀性.还对γ-TiAl合金动态再结晶新晶粒形成过程进行了讨论.  相似文献   

3.
作为一种新型合金,Ti-6Al-4V-0.1B合金显示了较好的塑性成形能力及应用前景。通过真空感应凝壳熔炼方法制备了Ti-6Al-4V-0.1B合金铸锭,随后在850~985℃的温度范围内和0.001~1 s-1的应变速率范围内对Ti-6Al-4V-0.1B合金进行热压缩测试。运用真应力-真应变曲线研究了合金的流动行为。利用光学显微镜(OM)、扫描电镜(SEM)和电子背散射衍射技术(EBSD)对合金显微组织进行了表征。研究结果显示,Ti-6Al-4V-0.1B合金的流动应力对温度和应变速率都是敏感的,且温度对流动应力的影响比应变速率大。与基体合金相比,Ti-6Al-4V-0.1B合金具有更高的应力指数和应变激活能,这归因于分布在晶界处的TiB增加了原子扩散的阻力,减慢了热变形动态软化过程。热压缩过程中,初生α相发生了明显的球化,球化过程也受变形温度和应变速率的影响。由于TiB与基体之间的应变不匹配导致了高应变速率下合金基体的开裂,随后裂纹沿着定向排列的TiB粒子扩展,因此Ti-6Al-4V-0.1B合金的热加工过程应在低应变速率下进行。  相似文献   

4.
采用高能球磨及真空热压烧结的方法制备超细晶/纳米晶双相γ-TiAl基合金,将名义成分为Ti-45Al-7Nb(%,原子分数)的混合粉末经40 h高能球磨后,粉末达到纳米级。球磨后的混合粉末经真空热压烧结(烧结温度1200℃,压力30 MPa,保温保压1 h)。研究该合金在温度为1000,1050和1100℃,应变速率为1×10-4,1×10-3和1×10-2s-1 3个变形速率条件下的高温压缩组织、流变行为和本构关系。研究结果表明:经过高能球磨及真空热压烧结原位合成的组织为超细晶α2-Ti3Al及γ-TiAl双相等轴状合金组织,晶粒尺寸小于5μm。合金为热敏感型和应变速率敏感型合金,合金压缩流变应力随应变速率的降低和温度的升高而下降。高温热压缩时,合金组织由规整等轴状被压变形为长条形,形变主要发生在γ-TiAl相中,晶界和γ相晶内可见位错及孪晶,孪晶及位错为主要的形变机制。在1000,1050和1100℃,1×10-4,1×10  相似文献   

5.
以元素粉末为原料,通过混料、冷等静压及真空烧结制备Ti-3Al-5Mo-4.5V合金,在应变速率为0.001,0.01,0.1和1s~(-1),变形温度为700,800,900和1 000℃的条件下对合金进行热压缩变形,通过建立热变形本构方程,并绘出热加工图,研究粉末冶金钛合金的热变形行为及热加工性能。结果表明,Ti-3Al-5Mo-4.5V合金在高应变速率下(700~800℃/0.01~1 s~(-1)和800~960℃/0.2~1 s~(-1))变形时发生失稳,失稳机制为局部流变和内部开裂。最佳变形区间为750~900℃/0.001 s~(-1),变形机制为动态再结晶。基于加工图,对Ti-3Al-5Mo-4.5V合金棒材进行高温轧制变形实验,变形量高达98.4%,变形后的合金组织均匀细小。  相似文献   

6.
采用Gleebl于1500热模拟试验机研究γ-TiAl合金在1000~1 100℃、应变速率在0.01~1s-1的热变形特性,分析了流动应力与热力参数的关系,并建立了γ-TiAl合金在热态变形过程中峰值应力和本构方程模型.结果表明,在试验条件范围内,只有当应变速率为0.01 s-1时,才会发生完全动态再结晶;并且,温度...  相似文献   

7.
以Ti-45Al合金粉、Nb粉、Al粉和TiB2合金粉为原料,采用放电等离子烧结法制备含纳米TiB增强相的Ti-45Al-7Nb-1B合金,通过热模拟实验研究该合金在900~1 200℃、应变速率为0.001~1 s-1条件下的热变形行为,推导出高温变形流变本构方程,并建立基于动态材料模型的热加工图。结果表明:含纳米TiB增强相的Ti-45Al-7Nb-1B合金的高温流变应力与变形条件之间的关系可用双曲正弦函数描述,其高温变形激活能为497.95k J/mol,在高应变速率(0.1 s-1)条件下变形时,材料发生失稳变形,最佳变形参数区间为1 000~1 130℃/0.001~0.01 s~(-1)。  相似文献   

8.
采用电弧熔炼法制备含微量B元素的Ti-43Al-4Nb-1.4W-xB(x=0.2,0.4,0.6,0.8。数据为原子分数,%)合金;利用光学显微镜(OM)和扫描电镜(SEM)研究B含量对该铸态合金显微组织的影响,并通过热模拟压缩试验研究温度为1 050~1 200℃、应变速率为10 3~1 s 1的变形条件下Ti-43Al-4Nb-1.4W-0.6B合金的热变形行为,分析该合金在不同变形条件下的组织演化规律。结果表明:当B含量(质量分数)达到0.6%时,合金组织明显细化;Ti-43Al-4Nb-1.4W-0.6B合金的高温压缩流变应力随变形速率增加以及变形温度降低而增加;其峰值应力与变形条件之间的函数关系可用双曲正弦函数来描述,并以此求得高温变形激活能为580.68 kJ/mol;加入0.6%B对合金动态再结晶形核起到一定的促进作用,热变形后,合金发生明显的动态再结晶。  相似文献   

9.
以Ti-47Al-2Cr(摩尔分数,%)合金为对象,研究了应变速率对不同晶团尺寸的全层状TiAl基合金室温拉伸性能的影响.结果表明,全层状TiAl基合金的室温强度随应变速率的加快而提高,低延性全层状TiAl基合金的室温延伸率对应变速率不敏感,而高延性全层状TiAl基合金的室温延伸率对应变速率敏感,并随应变速率的加快而提高.  相似文献   

10.
Tamirisakandala等报道了通过在Ti-6Al-4V合金中添加0.1%硼,使合金的β晶粒尺寸由1 700μm减小为200μm。然而截至目前,对于添加硼的Ti-6Al-4V合金在热机械加工过程中的变形行为和显微组织演化还不是很清楚。为此,印度学者ShibayanRoy等人对添加硼的Ti-6Al-4V合金进行了热压缩试验,研究了变形温度和应变速率对变形行为和组织  相似文献   

11.
在Gleeble-3500热模拟试验机上对Ti-25Al-14Nb-2Mo-1Fe合金进行了等温恒应变速率压缩试验,研究了在变形温度为950~1 100℃,应变速率为0.001~1 s-1,最大变形程度为50%的条件下合金的热压缩变形流变应力行为与微观组织演变。结果表明:Ti-25Al-14Nb-2Mo-1Fe合金的流变应力对变形温度和应变速率均较为敏感,其流变应力曲线具有应力峰值、流变软化和稳态流变的特征。在变形温度为950℃,应变速率为0.001~0.1 s-1的条件下,Ti-25Al-14Nb-2Mo-1Fe合金的热变形特性为片层组织球化,其热变形机制可用晶界分离球化模型进行解释说明;在变形温度为1 000~1 100℃,应变速率为1 s-1的条件下,材料只发生了动态回复现象;在变形温度为1 050~1 100℃,应变速率为0.001~0.1 s-1的条件下,材料发生了动态再结晶现象。  相似文献   

12.
目前,一种钛粉末冶金工艺用于飞机发动机和飞行器等高性能的构件上。 用粉末冶金陶瓷模具制造工艺可生产复杂的钛近净形构件,其工艺如下:将球形预合金钛粉末置于特殊的陶瓷容器中,采用热等静压加工工艺制成更致密的近净形构件。该工艺制成的构件可节省机加工工序。 用以上工艺生产的Ti-6Al-4V、Ti-6Al-2Sn、  相似文献   

13.
采用等离子旋转电极法制备Ti-47Al-2Cr-0.2Mo,Ti-50Al-2Nb-0.3W和Ti-45Al-7Nb-0.3W(元素含量均为原子分数,%)3种预合金粉末,再通过热等静压制备成块体合金,在950℃空气环境中进行合金的高温氧化实验,并利用扫描电镜(SEM)观察与分析合金氧化后的表面形貌以及截面的元素面分布,用X射线衍射(XRD)分析氧化膜的相组成,研究Nb元素及其含量对Ti Al基合金高温氧化行为的影响。结果表明:Nb元素的添加可提高粉末冶金Ti Al基合金的抗氧化性能,这3种合金中Ti-45Al-7Nb-0.3W合金的抗氧化性能最好,经过80 h氧化后质量增量仅为2.484 mg/cm2,为不含Nb合金的12.44%,并且氧化膜整体厚度最薄,最厚的地方氧化膜厚度约为8.3μm。该合金表面形成连续致密的Al2O3氧化层,氧化膜从外向内依次为TiO2层/Al2O3层/(Ti,Nb)O2层/富Al和Nb层。  相似文献   

14.
利用紧凑拉伸试样通过预制疲劳裂纹研究近片层组织Ti-45Al-8Nb-0.2W-0.2B-0.1Y合金和全片层组织Ti-45Al-7Nb-0.2W-0.2Hf-0.3B-0.15C合金在750℃下的断裂韧性,并分析两种组织合金的断口形貌.结果表明,近片层组织和全片层组织高铌TiAl合金750℃时的断裂韧性分别为19.54和31.58 MPa·m1/2,且近片层组织疲劳裂纹开始萌生时的最大疲劳载荷明显低于全片层组织.断口分析表明近片层组织中裂纹主要在等轴γ晶中萌生,裂纹扩展方式包括沿γ晶、穿γ晶及沿片层、穿片层;全片层组织中裂纹主要在垂直于加载方向的片层间萌生,裂纹以沿片层与穿片层的混合方式进行扩展且伴有二次裂纹的萌生.   相似文献   

15.
<正>Ti-5Al-5V-5Mo-3Cr合金是一种高强近β型钛合金,该合金兼具良好的加工性能和力学性能,已被用于制造大型航空部件。日本研究人员基于组织演变和加工图技术,对原始组织为单相β等轴晶的Ti-5Al-5V-5Mo-3Cr合金的热变形机制进行了研究。实验温度分别为600、700、800、900、1 000、1 100℃,应变速率分别为0.001、0.01、0.1、1、  相似文献   

16.
TiAl合金的热压缩模拟   总被引:1,自引:0,他引:1  
在Gleeble1500热模拟实验机上对Ti-45Al-7Nb-0.15B-0.4W合金进行了恒应变速率热压缩实验。热模拟参数分别如下:温度为1050~1230℃,变形速率为0.01 s-1,变形量为30%。测试了不同温度下的位移-载荷曲线,观察了变形后的宏观与微观组织。结果表明:使用45#碳钢作为包套时,TiAl合金的包套热压缩温度不能低于1050℃,也不能超过1230℃,最优温度为1180℃;当包套TiAl合金的名义相对压缩量为30%时,TiAl合金块的实际最大相对压缩量为50%,TiAl合金和微观组织被拉长、压扁。  相似文献   

17.
采用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)和力学拉伸试验等方法对粉末冶金Ti-45Al-7Nb-0.3W合金板材的微观组织以及力学性能进行了研究.结果表明,热等静压态合金的组织为近γ组织,其织构强度呈随机分布;轧态合金的组织为双态组织,板材中存在较强的{ 100}<010>立方织构和较弱的{110} <112>黄铜型织构;室温下,不同拉伸方向上该高Nb-TiAl合金板材的屈服强度在708 ~ 725 MPa之间,延伸率均不到1%;高温条件下,随温度的升高,合金板材的强度逐渐降低,延伸率逐渐升高,最高为15.6%,其塑脆性转变温度在800~850℃之间;粉末冶金Ti-45Al-7Nb-0.3W合金板材的力学性能呈现出相对较弱的各向异性,可以归因于{100}<010>立方织构.  相似文献   

18.
<正>Ti-6Al-7Nb合金与Ti-6Al-4V合金相似,但是具有更强的惰性,是专为医疗应用而设计的。然而,与Ti-6Al-4V合金不同的是,该合金为近α型合金,β相含量小于5%,所以不能通过常规热处理进行强化。众所周知,利用大塑性变形(SPD)技术能够获得超细晶(UFG)纳米结构材料,其晶粒尺寸小于1μm,并且具有优良的力学性能。UFG纳米结构的形成可以使Ti-6Al-7Nb合金的强度得到提高,在许  相似文献   

19.
基于等温恒应变速率热压缩实验,探究了新型Ti-4Al-5Mo-6Cr-5V-1Nb合金在变形温度700~900℃、应变速率0.001~1.000 s-1条件下的热变形行为.通过真应力-真应变曲线分析了变形参数对合金力学性能的影响规律,选用修正的Arrhenuis双曲正弦函数模型推导了耦合应变的本构方程,基于动态材料模型...  相似文献   

20.
利用X衍射分析(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、室温拉伸试验等手段,研究粉末冶金Ti-45Al-7Nb-0.3W(原子分数,%)合金包套轧制过程中的显微组织和力学性能的变化规律。结果表明:热等静压法态的Ti-45Al-7Nb-0.3W合金组织为近γ组织,主要由块状的γ相组成,同时包括少量的α2相及极少量的B2相。轧制后Ti Al合金板材为双态组织,B2相消失。随轧制变形量增加,合金板材强度增加,变形量为40%时,板材抗拉强度最大,达到955 MPa。继续增加变形量合金板材的力学性能有所降低。当变形量较小时,合金的塑性变形主要通过位错滑移和攀移来实现。随变形量增加,孪生和动态再结晶机制发挥作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号