首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
周炫余  刘娟  罗飞  刘洋  颜晗 《计算机科学》2016,43(2):31-34, 56
指代消解的基本任务是把指向现实世界中相同实体的所有实体表达关联起来。与英文指代消解的研究相比,中文指代消解的研究相对较少,至今没有对现存的中文指代消解模型进行公平的测评和比较,主要原因是现存的中文指代消解模型在训练和测评时采用了不同的语料,且所选用的特征属性也不相同。基于上述原因,实现了5类基本的中文指代消解模型,并在ACE2005中文语料上进行同平台、同语料、同特征的测评。通过测评比较了各类模型的性能,同时分析和探讨了影响中文指代消解模型精度的各种因素。  相似文献   

2.
分析一些篇章结构特征,探讨一种基于篇章结构的自动文摘方法.充分结合篇章结构提供的信息,采用动态聚类算法划分文章子主题;以各子主题为单位摘要,通过句子相关度计算,合并各部分摘要的重叠内容;将精简后的各部分摘要顺序输出生成篇章摘要.该摘要方法实行全文加权,局部抽取,从全面性和准确性上提高摘要质量.  相似文献   

3.
基于篇章多级依存结构的自动文摘研究   总被引:17,自引:0,他引:17  
自动文摘是自然语言处理领域的一项重要的研究内容,其研究目的是探索人类从自然语言篇章中获得取信息,提炼信息的思维机制,并在此基础上开发出能够自动编写文献摘要的软件,从面提高信息检索、传播的效率。  相似文献   

4.
基于最大熵模型的英文名词短语指代消解   总被引:11,自引:0,他引:11  
提出了一种新颖的基于语料库的英文名词短语指代消解算法,该算法不仅能解决传统的代词和名词/名词短语间的指代问题,还能解决名词短语间的指代问题。同时,利用最大熵模型,可以有效地综合各种互不相关的特征,算法在MUC7公开测试语料上F值达到了60.2%,极为接近文献记载的该语料库上F值的最优结果61.8%。  相似文献   

5.
实现了一个基于最大熵的中文指代消解系统。通过预处理获得相关信息,抽取出12特征,采用最大熵算法训练生成分类器。在ACE05 bnews中文测试语料上的指代消解实验结果表明,本系统是一个中文指代消解研究的较好平台。  相似文献   

6.
指代消解是自然语言处理领域中要研究的关键问题之一。在自然语言中,为了使语言简明,减少冗余,往往对同一意思的单词、句子或某一事件用不同的单词来代替。相对于人而言,计算机理解这些指代现象就比较困难,因此近年来关于指代消解的研究越来越多。由于中文指代消解研究起步较晚,因此关于中文名词短语指代消解的研究还比较少,大多研究是关于英文指代消解的。给出了一个基于SVM的中文名词短语指代消解平台并详细介绍了整个实现过程,语料库采用OntoNotes 3.0的中文新闻语料。利用3种评测算法对系统性能进行了评测,结果表明本系统是一个比较好的中文指代消解平台。  相似文献   

7.
一种基于图划分的无监督汉语指代消解算法   总被引:4,自引:2,他引:4  
指代消解是自然语言处理领域中的一个重要问题。针对当前中文指代标注训练语料非常缺乏的现状,本文提出一种无监督聚类算法实现对名词短语的指代消解。引入图对名词短语的指代消解问题进行建模,将指代消解问题转化为图划分问题,并引入一个有效的模块函数实现对图的自动划分,使得指代消解过程并不是孤立地对每一对名词短语分别进行共指决策,而是充分考虑了多个待消解项之间的相关性,并且避免了阈值选择问题。通过在ACE中文语料上的人称代词消解和名词短语消解实验结果表明,该算法是一种有效可行的无监督指代消解算法。  相似文献   

8.
提出一种基于支持向量机(SVM)的英语名词短语的指代消解方法,并给出具体实现系统。实验采用了几个常用的基本特征,在MUC-6公开语料上测试得到的F值为68.6,优于同类型的其他原型系统。分析SVM中不同核函数对分类结果的影响以及不同的特征对指代消解的作用。实验结果表明,同位语、别名和字符串匹配3个特征对指代消解非常重要,距离作为特征使用时对指代消解没有帮助,但可在训练样例生成时作为限制条件来使用。  相似文献   

9.
与传统新闻文本相比,交互式问答中蕴含着更为丰富的语言现象。在传统的针对新闻文本的指代消解方案的基础上,融入了交互式问答特有的特征集,给出了一个适于交互式问答文本的指代消解方案。具体而言,基于浅层语义角色分析的结果进行话语结构的识别,根据识别出的话语结构进行话语中心及中心跳转的识别。将获取到的话语中心及跳转信息组织成交互式文本特有的特征集,使用交互式问答领域广泛使用的TREC2004和TREC2007的评测语料进行指代消解的实验,结果表明给出的方案能大大提高交互式问答文本中指代消解的性能,系统F值提高了3.2%。  相似文献   

10.
季红洁  赵知纬  钱龙华 《福建电脑》2012,28(11):10-12,45
跨文本指代消解研究是自然语言处理中的一个重点以及难点,是信息检索、信息抽取和多文档摘要等应用的重要组成部分。传统的跨文本指代消解主要解决信息检索中遇到的重名消歧问题。本文从信息抽取的角度出发,旨在解决信息抽取过程中的重名消歧和多名聚合两大跨文本指代消解任务。本文在一个基于ACE2005中文语料库标注的中文跨文本指代语料库上,利用空间向量模型进行面向信息抽取的跨文本指代消解。  相似文献   

11.
一种基于文章主题和内容的自动摘要方法   总被引:8,自引:0,他引:8  
文章介绍了一种新的使用自然语言处理技术的自动系统。通过融合基于内容的方法和基于主题的方法,将主题与内容相结合,生成具有良好连贯性和流畅性的。该方法首先对主题词进行分析,动态地处理具有抽象标题和具体标题的文档;然后采用词汇、语法、语义分析等自然语言处理技术,对文章的文本内容进行深入分析;再根据线性加权融合两种分析得到的结果,生成;最后采用指代消解技术使生成的更连贯流畅。与仅基于内容的自动文摘系统相比较,评测结果显示,该系统生成的质量有明显提高。  相似文献   

12.
基于向量空间模型的文本聚类算法   总被引:12,自引:3,他引:12       下载免费PDF全文
文本聚类是聚类的一个重要研究分支,是聚类方法在文本处理领域的应用。该文探讨了基于向量空间模型的文本聚类方法,提出了一种文本聚类的改进算法——LP算法。同时,基于语料库的实际聚类效果,就维度确定、特征选择等方面提出优化方案。实验证明,LP算法有效地减少了聚类所消耗的时间,实用性和灵活性都较高。  相似文献   

13.
文本风格迁移一直是自然语言处理(NLP)中的一个研究热点,近年来,随着文本生成方法的发展,越来越多的工作着眼于不成对(non-parallel)文本风格迁移这一任务.这一任务的目标是,利用不包含一一对应句子的两个或多个不同风格的文本集,学习一个迁移模型,实现改变句子的风格的同时保留句子其他的内容.目前针对该任务,已有一些基于生成对抗网络的迁移算法被提出,但是受限于对抗学习本身的训练不稳定,以及对句子的风格和语义的独立性假设本身不合理,这些方法无法高效的学到迁移效果好的模型.在这篇文章中,我们首次从统计学习的角度给出了文本风格的定义—文本集中语义向量的协方差矩阵,在这种新的观点下,文本的风格依赖于所有句子的语义向量.我们随后提出了一种无学习(learning free)迁移方法,我们只需要预训练一个自编码器来得到句子的语义向量,然后对这些向量进行白化和风格化变换,来实现风格迁移.  相似文献   

14.
文本分类特征权重改进算法   总被引:4,自引:2,他引:4       下载免费PDF全文
台德艺  王俊 《计算机工程》2010,36(9):197-199
TF-IDF是一种在文本分类领域获得广泛应用的特征词权重算法,着重考虑了词频与逆文档频等因素,但无法把握特征词在类间与类内的分布情况。为提高在同类中频繁出现、类内均匀分布的具有代表性的特征词权重,引入特征词分布集中度系数改进IDF函数、用分散度系数进行加权,提出TF-IIDF-DIC权重函数。实验结果表明,基于TF-IIDF-DIC权重算法的K-NN文本分类宏平均F1值比TF-IDF算法提高了6.79%。  相似文献   

15.
文本分类特征权重改进算法   总被引:1,自引:2,他引:1       下载免费PDF全文
台德艺  王俊 《计算机工程》2010,36(9):197-199,
TF-IDF是一种在文本分类领域获得广泛应用的特征词权重算法,着重考虑了词频与逆文档频等因素,但无法把握特征词在类间与类内的分布情况。为提高在同类中频繁出现、类内均匀分布的具有代表性的特征词权重,引入特征词分布集中度系数改进IDF函数、用分散度系数进行加权,提出TF-IIDF-DIC权重函数。实验结果表明,基于TF-IIDF-DIC权重算法的K-NN文本分类宏平均F1值比TF-IDF算法提高了6.79%。  相似文献   

16.
基于正交分解的文本分类模型   总被引:2,自引:0,他引:2       下载免费PDF全文
针对文本分类领域中向量空间模型维数过高和空间扭曲的问题,提出一种基于正交分解的新模型。借用物理学中力的正交分解,将高维的文本向量映射到低维的以类别为坐标轴的空间中,解决了高维的向量和扭曲的空间这2个问题。实验表明,与向量空间模型相比,新模型下分类速度有较大提高,精度也有所增加。  相似文献   

17.
基于类别空间模型的文本分类系统的设计与实现   总被引:8,自引:1,他引:8  
从理论和应用的角度对文本信息的分类方法进行研究,提出类别空间模型的概念,用于描述词语和类别之间的关系,并实现了基于类别空间模型的文本分类系统。通过实验表明,该系统有效地提高了文本分类的正确率。  相似文献   

18.
杜雨奇  郑津  王杨  黄诚  李平 《计算机应用》2022,42(12):3692-3699
文本分割的主要任务是将文本按照主题相关的原则划分为若干个相对独立的文本块。针对现有文本分割模型提取文本段落结构信息、语义相关性及上下文交互等细粒度特征的不足,提出了一种基于图卷积网络(GCN)的文本分割模型TS-GCN。首先,基于文本段落的结构信息与语义逻辑构建出文本图;然后,引入语义相似性注意力来捕获文本段落节点间的细粒度相关性,并借助GCN实现文本段落节点高阶邻域间的信息传递,以此增强模型多粒度提取文本段落主题特征表达的能力。将所提模型与目前常用作文本分割任务基准的代表模型CATS及其基础模型TLT-TS进行对比。实验结果表明在Wikicities数据集上,TS-GCN在未增加任何辅助模块的情况下比TLT-TS的评价指标Pk值下降了0.08个百分点;在Wikielements数据集上,相较于CATS和TLT-TS,所提模型的Pk值分别下降了0.38个百分点和2.30个百分点,可见TLT-TS取得了较好的分割效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号