共查询到20条相似文献,搜索用时 62 毫秒
1.
利用卫星对地观测的特点,容易得到同一地区的多幅多时相的遥感影像.这些影像提供了不同角度对地观测的数据,影像之间存在着互补性的信息.本文中提出了利用插值进行超分辨率重建的简单算法,首先对不同的遥感影像进行运动参数估计.进行图像配准.然后将低分辨率的遥感影像投影到高分辨率的网格上以获得超分辨率重建后的影像.重建后的图像的目视效果较好,图像的平均值、标准差及信息熵等对比效果有所提高. 相似文献
2.
3.
遥感影像中普遍存在着混合像元,如何分析和解译混合像元一直是人们研究的热点。亚像元定位方法是将混合像元分解成为亚像元,并赋予不同的端元组分,以提高影像整体分类精度的一种技术。本文在神经网络亚像元定位模型的基础上,结合超分辨率重建理论,提出一种新型的BPMAP模型,在每一个类别的组成分图像与亚像元定位图像之间建立起高、低分辨率的观测模型,采用最大后验估计(MAP)算法对BP神经网络的定位结果进行约束,最终确定混合像元内部各组分合适的空间位置。通过对模拟的简单图像和长江三峡地区的ETM影像进行实验,结果表明,与神经网络模型相比,本文方法能够更加有效地解决亚像元定位的问题,进一步消除定位过程中产生的误差,提高精度。 相似文献
4.
给出了一种结合相位相关配准算法和迭代反向投影的彩色图像超分辨率重建算法。相位相关算法是一种利用频域信息估计图像之间偏移量的快速算法。在HSV颜色空间下利用低分辨率图像间的亚像素偏移量进行迭代反投影,保留图像的 H通道只对S通道和V通道进行迭代反投影。实验证明重建后的彩色图像与原始图像色调保持一致,并且很好地重建出图像的细节和纹理,避免了经过迭代之后造成的图像过度的平滑和颜色失真。 相似文献
5.
目的 为了增强图像超分辨率重建的准确性,克服传统插值所产生的边缘模糊与边缘锯齿等负面效果,提出一种基于多方向模板变分模型的单幅图像超分辨率重建方法。方法 首先构建体现28个方向的多方向模板对输入图像的轮廓方向进行计算,同时通过将TV模型引入到图像轮廓的估计中来确定边缘轮廓的最优方向;在此基础上通过进行基于所提出的多方向模板的图像插值来实现图像的超分辨率重建。结果 对比基于活动轮廓的图像边缘插值方法重建的经典高分辨率测试图像,本文方法在平均峰值信噪比和平均结构相似度方面分别提高了1.578 dB和 0.030 02 dB。结论 本文方法可以有效地克服传统插值方法所产生的边缘模糊和边缘锯齿化等负面效果,也避免了较少方向模板所带来的边缘和纹理丰富区域的纹理失真现象,可以取得较好的重建效果。 相似文献
6.
图像超分辨率重建技术对于输入的低分辨率图像进行相关处理,从而重构出高分辨率图像,该技术已经成为图像处理研究领域的一个热点方向。对超分辨率图像重建的研究进展进行了综述。阐述了图像超分辨率重建的基本原理。对基于重建的图像超分辨重建中:IBP,POCS等算法,基于学习的图像超分辨率重建中:稀疏表示,基于深度神经网络等算法及一些相关改进的算法进行了综述。对图像超分辨率重建的研究提出了展望。 相似文献
7.
多分辨率图像序列的超分辨率重建 总被引:1,自引:0,他引:1
针对不同焦距下拍摄的多分辨率尺度的图像序列,本文提出了一种基于尺度不变特征转换(Scale invariant feature transform, SIFT)和图像配准的超分辨率(Super resolution, SR)图像盲重建算法.首先提取图像SIFT特征点,然后用向量夹角余弦进行特征描述符向量的初匹配,并用随机抽样一致性 (Random sample consensus, RANSAC)算法消除误匹配提高配准精度.计算变换参数后,将低分辨率图像(Low-resolution, LR)像素点映射到高分辨率(How-resolution, HR)网格,最后利用像素可信度加权算法填充缺失像素值,重建更高分辨率的图像.实验表明, 本文算法能精确估计图像序列的缩放因子,可以有效处理仿射变换模型,对配准误差也具有一定的鲁棒性.算法从实质上提高了多分辨率尺度图像序列的分辨率,尤其在低分辨率帧数较少可用于重建的信息量严重不足时也能获得比较满意的重建效果. 相似文献
8.
图像超分辨率重建技术综述 总被引:2,自引:0,他引:2
超分辨率(SR)重建技术是利用一幅或多幅低分辨率(LR)图像的信息重建出一幅高分辨率(HR)图像,同时能够消除由成像器件引入的模糊、噪声.该技术应用领域广泛,已经成为国内外图像处理领域的研究热点之一.介绍了超分辨率重建技术的基本原理,并分别以单帧和多帧、频域和空域为分类依据,分别阐述了超分辨率重建技术的经典方法,系统地总结了各种方法的优缺点,提出了超分辨率重建技术可能的研究方向,从而为超分辨率重建相关技术的进一步研究提供一定的理论基础. 相似文献
9.
超分辨率图像重建方法研究 总被引:1,自引:0,他引:1
超分辨率图像重建就是由低分辨率图像序列来估计高分辨率图像,已成为当前研究的热点。对超分辨率的概念和应用场合进行了阐述,对空域的几种主要重建方法进行了详尽分析与比较,并研究了压缩域中的重建方法,指出了各自的优点与不是。研究表明,超分辨率重建具有广泛的应用前景,其成像模型、运动估计、重建算法和实时实现将是今后研究的重点。 相似文献
10.
为了复原在轨卫星拍摄的退化遥感图像,以达到精确的对地观测的目的,利用交错半个像素的"亚像元"图像进行交错采样,重建成分辨率更高的的网格,然后对新建出的空格点进行小波插值估计.对插值后图像的高频进行中值滤波,融合两幅错半个像元的图像信息,最后复原成一幅地貌信息更丰富、分辨率更高的遥感图像.试验的仿真图像证明了这种小波复原方法的有效性. 相似文献
11.
12.
原始影像序列间的非均匀采样以及影像的先验知识不足等是影响影像重建的难点问题。本文在小波理论基础上,阐述了空间域不同尺度的小波分解与影像高分辨率重建的关系,并根据非均匀采样数据对不同尺度空间的小波系数进行估算,然后利用估计的小波系数对高分辨率格网上的未知点进行插值重建,获取了高分辨率的影像。实验证明,本文提出的算法克服了先验知识不足和原始影像序列的非均匀采样的难题,并在获取的重建影像分辨率和清晰度方面有了较大提高,计算的复杂度改善也比较明显。 相似文献
13.
14.
所谓超分辨率(SR)技术就是由低分辨率(LR)图像序列来重建高分辨率(HR)图像的技术,而基于压缩图像的SR技术正成为当前研究的热点。为了提高压缩图像的重建质量,在正则化理论的基础上,通过利用比特流中的信息,提出了一种新颖的空时自适应超分辨率重建算法,该算法先利用正则化代价函数控制时域数据和空域先验信息之间的平衡,使正则化参数在SR重建过程中得到自适应地调整,然后利用迭代梯度下降法进行超分辨率重建。仿真实验表明,该自适应算法比采用传统算法重建的图像的主、客观质量有一定的提高,适合压缩图像的应用。 相似文献
15.
针对车牌识别中所拍摄的图像序列存在分辨率较低的问题,提出了利用图像间的互补信息来重建一幅高分辨率图像的方法,以便于车牌图像的识别。通过迭代求解法和高斯金字塔模型,快速精确地估计得到配准参数,采用凸集投影(POCS)算法对图像序列进行了超分辨率重建。实验表明算法具有亚像素级的配准精度和较强的稳健性,重建图像取得了良好的视觉效果。 相似文献
16.
为了从低分辨率序列图像中重构出高分辨率的图像,该文在Robust超分辨率图像重构算法中引入了正则化因子,提出了一种新的超分辨率图像重构算法,它不仅消除了低分辨率图像中的奇变信息(bias),而且增强了抑制超分辨率图像重构噪声的能力。实验结果表明,该文提出的算法具有更好的效果(MSE值更小)。 相似文献
17.
18.
该文提出了一种基于多帧的NEDI超分辨率图像重建算法。该算法先利用POCS方法将多帧序列的运动估计补偿到低分辨率图像中,然后再利用NEDI方法对补偿后的图像进行超分辨率图像重建,通过实验仿真证明该算法是有效的。 相似文献
19.
基于聚类的单帧图像超分辨率重建方法 总被引:1,自引:0,他引:1
为解决单幅图像的超分辨重建问题,提出一种基于聚类的单帧图像超分辨率重建方法.从高分辨率样本图像中学习一个结构聚类型的高分辨率字典,利用迭代收缩算法优化目标方程,求得高分辨率图像的表示系数,使用学习到的高分辨率字典对低分辨率图像进行重构.实验结果表明,与总变分方法、软切割方法和稀疏表示方法相比,该方法的单帧图像超分辨率重建效果较好. 相似文献