首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
QPQ处理的氧化工艺对抗蚀性的影响   总被引:1,自引:0,他引:1  
邹丹  李远辉  吴少旭  谢勰 《热处理》2006,21(4):32-33,36
QPQ技术是一种主要包括盐浴渗氮和盐浴氧化的表面处理技术。通过经QPQ处理的工件的浸泡试验和盐雾试验探讨了盐浴氧化温度和时间对经QPQ处理的工件抗蚀性的影响。结果表明,过高或过低的氧化温度均会降低工件的抗蚀性,最佳的氧化时间以能在工件表面形成完整的四氧化三铁膜为准。  相似文献   

2.
A new method is presented for the fast preparation of functionally graded cemented carbide materials by microwave heating nitriding sintering. The influence of composition and sintering temperature on the mechanical properties, microstructure, and phase composition of the materials was studied. Results showed that functionally graded cemented carbides with the desired mechanical properties can be obtained rapidly by microwave heating nitriding sintering. A gradient layer with a Ti(C, N)-enriched surface layer, and underneath a Co-enriched layer formed on the top of the hard alloy substrate. The nitriding process had little effect on the microstructure of the matrix. A lower surface roughness, and the similar layer thickness as seen in conventional heating nitriding was obtained by microwave heating nitriding sintering in a short period of time. The thickness of the gradient layer increased with increasing temperature. The high Ti content in the raw material was beneficial to the formation of the gradient layer; however, the Co content had little effect on the gradient layer thickness when it increased from 6% to 10%.  相似文献   

3.
QPQ技术的渗氮工艺对零件抗蚀性的影响   总被引:1,自引:0,他引:1  
张辉  罗德福 《热处理》2010,25(3):30-32
QPQ工艺是一种主要包括盐浴渗氮和盐浴氧化的表面强化技术。通过经QPQ处理的低碳钢片的盐雾试验,探讨了盐浴渗氮温度和时间对经QPQ处理的工件抗蚀性的影响。结果表明,存在一个适当的渗氮温度和渗氮时间范围,在该范围内处理的零件抗蚀性最佳。  相似文献   

4.
QPQ处理是一种相继在渗氮盐浴和氧化盐浴中处理的复合表面处理技术。经QPQ处理的工件具有高耐磨性、高耐蚀性和畸变量小等特点。QPQ工艺已广泛应用于汽车、摩托车零件,模具以及球墨铸铁件等。  相似文献   

5.
王怡萱 《表面技术》2024,53(7):200-207
目的 选择M50NiL钢(高合金钢)和AISI 4140钢(低合金钢)2种合金钢,研究渗氮气压对合金钢等离子体渗氮层组织结构、渗层厚度、硬度、韧性和摩擦磨损性能的影响规律。方法 根据离子渗氮GB/T30883—2017,在0~500 Pa渗氮气压范围内选择170、250、350 Pa 3个渗氮气压进行等离子体渗氮,研究渗层微观结构和性能。结果 对于M50NiL和AISI 4140两种合金钢,350 Pa时渗层厚度均最大,170 Pa次之,250 Pa厚度最小。M50NiL钢在350 Pa渗氮和AISI 4140钢在170 Pa渗氮时,表面层具有最优的强韧性。摩擦磨损性能显示,170 Pa和350 Pa气压渗氮的摩擦磨损性能明显优于250 Pa气压渗氮,其中磨损率规律与渗氮层的韧性值测试结果吻合。结论 气压影响了氮离子的能量和分布,从而影响了渗层厚度,钢中的合金元素含量和气压共同影响表面强韧化效果,并且表面强韧化效果直接影响渗氮层的摩擦磨损性能。  相似文献   

6.
Low pressure plasma arc discharge-assisted nitriding of AISI 304 austenitic stainless steel is a process that produces surface layers with useful properties such as a high surface hardness of approximately 1500 Hv0.1 and a high resistance to frictional wear and corrosion. The phase composition, the thickness, the microstructure and the surface topography of the nitrided layer, as well as its properties, depend essentially on the process parameters. Among them, the processing temperature is the most important factor for forming a hard layer with good wear and corrosion resistance. Nitriding austenitic stainless steel at approximately 420°C for 70 min can produce a thin layer of 7–8 μm with very high hardness and good corrosion resistance on the surface. The microstructure was studied by optical microscopy and both glancing angle and conventional Bragg–Brentano (θ–2θ) symmetric geometry X-ray diffraction (XRD). The formation of expanded austenite was observed. Measurements of the wear depths indicated that the wear resistance of austenitic stainless steel can be improved greatly by nitriding at approximately 420°C using low-pressure plasma-arc source ion nitriding.  相似文献   

7.
Abstract

Current practice when nitriding high speed steel (HSS) cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation, results are presented of a metallographic, X-ray diffraction and X-ray photoelectron spectroscopy analysis of nitrided HSS surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context HSS cutting tool performance when machining under built-up edge conditions.  相似文献   

8.
Plasma nitriding is a widely used technique for increasing the surface hardness of stainless steels, and consequently, for improving their tribological properties. It is also used to create an interface between soft stainless steel substrates and hard coatings to improve adhesion. This paper reports on the mechanical and corrosion properties of AISI301 stainless steel (SS) after a duplex treatment consisting of plasma nitriding followed by deposition of Cr bond coat and CrSiN top layer by magnetron sputtering. Mechanical properties of the deposited films, such as hardness (H) and reduced Young's modulus (Er), were measured using depth-sensing indentation. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were carried out to evaluate resistance to localized and to general corrosion, respectively. The corrosion behavior has been correlated with the microstructure and composition of the surface layers, determined by complementary characterization techniques, including XRD, SEM, and EDS. The CrSiN layers exhibited an H value of 24 GPa, whereas the nitrided layer was shown to present a gradual increase of H from 5 GPa (in the nitrogen-free SS matrix) to almost 14 GPa at the surface. The electrochemical measurements showed that the nitriding temperature is a critical parameter for defining the corrosion properties of the duplex-treated SS. At a relatively high temperature (723 K), the nitrided layer exhibited poor corrosion resistance due to the precipitation of chromium nitride compounds and the depletion of Cr in the iron matrix. This, in turn, leads to poor corrosion performance of the duplex-treated SS since pores and defects in the CrSiN film were potential sites for pitting. At relatively low nitriding temperature (573 K), the nitrided interface exhibited excellent corrosion resistance due to the formation of a compound-free diffusion layer. This is found to favor passivation of the material at the electrode/electrolyte interface of the duplex-treated SS.  相似文献   

9.
《Acta Materialia》2008,56(17):4570-4576
Periodic arrays of ferromagnetic structures with micrometer and submicrometer lateral sizes have been prepared at the surface of a paramagnetic austenitic stainless steel by means of ion beam nitriding through different types of shadow masks (such as transmission electron microscopy grids or self-assembled porous alumina membranes). This method takes advantage of the formation of the ferromagnetic supersaturated nitrogen solid solution γN phase (i.e., expanded austenite) upon nitriding at moderate temperatures. The local character of the induced ferromagnetism is confirmed by magneto-optical Kerr effect measurements together with magnetic force microscopy imaging. Furthermore, the influence of the nitriding temperature and time on the induced ferromagnetic and structural properties has been analyzed.  相似文献   

10.
Low-Temperature Nitriding by Means of SMAT   总被引:2,自引:0,他引:2  
The microstructure in the surface layer of iron and steel samples can be refined at the nanometer scale by means of a surface mechanical attrition treatment (SMAT) that generates repetitive severe plastic deformation to the surface layer.The subsequent nitriding kinetics of the as-treated samples with the nanostructured surface layer is greatly enhanced so that the nitriding temperatures can be reduce to 300 ~ 400℃ regions. This enhanced processing method demonstrates both the technological significance of nanomaterials in advancing the traditional processing techniques, and provides a new approach for selective surface reactions in solids. This article reviews the present state of the art in this field. The microstructure and properties of SMAT samples nitrided will be summarized. Further considerations of the development and applications of this new technique will also be presented.  相似文献   

11.
Malinov  S.  Zhecheva  A.  Sha  W. 《Metal Science and Heat Treatment》2004,46(7-8):286-293
Titanium alloys are unique materials with an excellent combination of properties. However, their applications are limited due to low surface hardness. In the present work gas nitriding is performed with the aim of improving the surface properties of commercial titanium alloys. Four widely used titanium alloys, namely, Ti – 6% Al – 4% V, Ti – 6% Al – 2% Sn – 4% Zr – 2% Mo, Ti – 8% Al – 1% Mo – 1% V, and Ti – 10% V – 3% Fe – 3% Al, are studied. The process is performed in a nitrogen atmosphere at 950 and 1050°C for 1, 3, and 5 h. The resulting surface hardness exceeds the normal value for titanium alloys by a factor of 3 – 5 due to the change in the phase composition of the surface layer, yielding a solid solution of nitrogen in an α-Ti phase, a TiN nitride, and TiO2 dioxide. The influence of the parameters of the treatment process and the chemical composition of the alloys on the phase composition, microstructure, microhardness, and thickness of the surface layer is analyzed. It is shown that nitriding of alloys with α- and (α + β)-structures at 1050°C yields surface layers with inhomogeneous composition and irregular thickness, whereas after nitriding at 950°C the surface layers are homogeneous and have high properties. Practical recommendations are given for choosing nitriding parameters for different alloys and variants of application are discussed.  相似文献   

12.
Abstract

Al alloys offer a high potential as lightweight construction materials due to their low density, specific strength and processing properties. However, the field of application is limited by their low hardness and poor wear properties. Duplex surface treatment combining electron beam (EB) alloying and plasma nitriding offers one possibility to produce hard and wear resistant surface layers on Al alloys. The EB alloyed surface layer acts as supporting layer for the hard AlN coating so that the load bearing capacity can be enhanced. In the present study duplex treatment of Al-5083 (AlMg4·5Mn0·7) Al alloy has been investigated. Before the EB treatment alloying material deposition was carried out by atmospherically plasma spraying. Various sandwich layers based on Al and Fe respectively, have been applied. Different beam deflection techniques have been tested and their effect on surface deformation, microstructure and hardness was evaluated. Plasma nitriding was carried out in order to evaluate the nitriding behaviour of the surfaces modified by EB. Applying the EB meander technique results in smooth surfaces, good microstructural connection to the matrix material and a homogeneous distribution of the alloying elements together with an increase in hardness of ~300 HV0·1. Plasma nitriding leads to the formation of AlN layers of ~5 μm thickness.  相似文献   

13.
Plasma surface nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 350 °C, 420 °C and 500 °C for 10 h using a DC plasma nitriding unit, and the surface properties of the plasma surface engineered samples were systematically evaluated. Experimental results have shown that the surface properties of the plasma nitrided layers in terms of hardness, wear resistance, corrosion behaviour and corrosion-wear resistance are highly process condition dependent, and it is feasible to provide considerable improvement in wear, corrosion and corrosion-wear resistance of 17-4PH steel using optimised plasma treatment conditions. All three treatments can effectively improve the surface hardness and the sliding wear resistance under unlubricated conditions; high temperature (420 °C and 500 °C) treated materials revealed improved corrosion and corrosion-wear properties due to the formation of surface compound layers.  相似文献   

14.
The dc glow discharge plasma nitriding of austenite stainless steel with severe surface deformation layer is used to produce much thicker surface modified layer. This kind of layers has useful properties such as a high surface hardness of about 1500 Hv 0.1 and high resistance to frictional wear. This paper presents the structures and properties of low temperature plasma nitrided austenitic stainless steel with severe surface deformation layer.  相似文献   

15.
采用电子回旋共振(ECR)微波等离子体源离子渗氮技术对奥氏体不锈钢进行氮化处理,获得与等离子体浸没离子注入(PII)结果相似的高硬度、高耐磨性表面改性层。  相似文献   

16.
Internal nitriding is a process of surface saturation with nitrogen, in which there forms a diffusion layer, consisting of nitride particles that are uniformly distributed in a solid solution but without a surface zone of continuous nitrides, as in conventional nitriding. This is achieved by selection of the alloy chemical composition and the nitriding process regimes. The presence of this diffusion layer opens up broad possibilities for the hardening of various alloys, since a high level of brittleness of the layer is avoided. This is an advantage over conventional nitriding.Moscow Highway Institute (MADI). Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 5–8, March, 1994.  相似文献   

17.
采用盐浴渗氮的化学热处理方法对FeCrMnNiAl0.2Ti0.1高熵合金进行表面强化,主要工艺为预热+盐浴渗氮+氧化,研究渗氮温度对渗层和性能的影响。采用光学显微镜、扫描电镜、X射线衍射仪研究不同渗氮温度下高熵合金的组织结构和物相,利用显微硬度计和W-2000摩擦磨损试验机分别测量硬度和耐磨性。结果表明,经过盐浴渗氮后,高熵合金表面形成含氮化物和氧化物的复合渗层,渗氮层深度最高为27.1 μm,硬度最高可达1080.0 HV0.2。盐浴渗氮可以有效提高高熵合金的耐磨性,改善摩擦学行为,640 ℃渗氮试样的磨损率仅为0.025 mm3/(N·m),与铸态相比降低了约76.7%。  相似文献   

18.
以焚烧炉用热电偶304L不锈钢套管为研究对象,开展了不同温度的离子渗氮试验研究。采用光学显微镜、扫描电镜、显微硬度计等分析了304L不锈钢离子渗氮前后的微观结构与力学性能,并研究了其在400 ℃的耐磨损性能。结果表明,304L不锈钢离子渗氮后,可形成硬度1300 HV以上的表面硬化层。随着渗氮温度的提高,表面硬度有所提升,同时硬化层厚度显著增加。离子渗氮可提高304L不锈钢的磨损性能及耐高温氧化性能。  相似文献   

19.
Abstract

Combined heat treatments, also known as duplex or hybrid technologies, offer new structure/property relationships in layered matrix compounds. The treatment sequence is critical. There are within reach both properties and property gradients that are impossible to achieve using the respective single treatment processes alone nor by simple addition of the effects of the single processes. Good technical progress is given by the combination of thermochemical treatment with high energy beam surface hardening, in particular electron beam hardening. After a historical survey (milestones) of the combination of thermochemical with thermal (surface) heat treatment technologies, the paper deals with the principles of the combining electron beam hardening after nitriding and vice versa , electron beam hardening before nitriding and the effects on microstructure and properties. Typical examples of industrial application are discussed. In this field of heat treatment, further development is focused on combinations of high energy beam hardening (electron or laser beam) with hard coating.  相似文献   

20.
目的 针对固体渗氮C422(22Cr12NiMoWV)钢,开展渗氮层显微组织结构及其缺口敏感性的研究,为C422汽轮机阀杆服役可靠性评价提供技术支持.方法 采用固体渗氮剂对C422钢表面进行渗氮,通过渗氮层的成分与物相检测、显微组织结构观察、力学性能测试及断口形貌分析,揭示不同温度及时间条件下C422钢渗氮层的显微组织...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号