首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
传统的隔离型并网逆变器体积大、重量重而且效率低。非隔离型并网逆变器以体积小、效率高的优点得到越来越多的研究者的关注。由于光照强度的变化,使得纹波电流对功率损耗的影响至关重要,但是却容易被忽略。对一种非隔离型并网逆变器工作原理进行了详细的分析与研究,在考虑纹波电流的情况下,建立了开关损耗和导通损耗的数学模型,最后进行了实验样机的研制。  相似文献   

2.
漏电流抑制技术是无变压器光伏并网逆变系统中必须解决的技术难题。在分析漏电流产生原因的基础上,研究了不同控制策略对抑制漏电流效果的影响。从逆变器控制策略的角度出发,对单相全桥式和三相全桥式光伏并网逆变器的漏电流进行了分析,并分别比较了它们的不同点,介绍了一种改进型的三相全桥式逆变器的控制策略。最后分别比较了各种控制策略的不同点。  相似文献   

3.
研究了一种改进型单相无变压器光伏并网逆变系统.在分析传统全桥拓扑结构的基础上,提出了一种改进型拓扑结构,对其共模电流进行了详细的分析和研究,并做了仿真实验研究.通过对改进型拓扑结构并网逆变器系统的仿真实验,实现了并网的基本要求,验证了改进型拓扑的正确性和可行性.  相似文献   

4.
吴学智  尹靖元  杨捷  童亦斌 《电网技术》2013,(10):2712-2718
提出了一种采用双级无隔离变压器的新型单相光伏并网逆变器拓扑,由于光伏池板与电网零线直接相连,可消除光伏池板对地的共模电压,解决了共模漏电流问题。所提拓扑采用了高频倍压的方式实现升压变换器与并网逆变器的连接,避免了三电平并网逆变器存在的中点电位二次脉动问题,降低了直流侧滤波电容的容量需求。为实现对单相并网电流的无误差控制,并网控制中采用比例谐振控制器,增加了系统的稳定性和提高了并网电流质量。仿真与实验结果均表明所提光伏并网逆变器拓扑的可行性。  相似文献   

5.
无变压器非隔离型光伏并网逆变器漏电流抑制技术   总被引:5,自引:0,他引:5  
漏电流抑制是无变压器型光伏并网系统需要解决的关键问题之一。VDE-0126-1-1标准规定,漏电流高于300 mA时光伏并网系统必须在0.3 s内从电网中切除。为了解释漏电流的根源,建立系统共模电压数学模型,在此基础上分析漏电流产生的原因,探讨不同调制策略对漏电流的影响,然后介绍几种典型的、能够有效抑制漏电流的电路拓扑结构,并分析各种拓扑的工作原理和特点。最后对漏电流抑制技术方面的发展趋势做了展望。  相似文献   

6.
无变压器光伏并网逆变器并网时,由于光伏电池板存在寄生电容,系统中将会出现漏电流,造成极大危害。因此提出了一种基于虚拟电阻的三相无变压器非隔离型光伏并网逆变器漏电流抑制方法,在对并网逆变器进行建模的基础上,分析得到系统漏电流产生原因,并考虑采用虚拟电阻抑制漏电流,首先给出了漏电流与虚拟电阻的关系,其次基于根轨迹法分析并设计了系统控制参数及虚拟电阻的大小,在保证系统稳定性条件下,尽可能大的抑制了漏电流,最终通过仿真结果验证了所提漏电流抑制方法的有效性。  相似文献   

7.
介绍了单相全桥并网逆变器的工作原理,研究了损耗分析方法。针对逆变器的主要器件,推导了相应的损耗计算公式。通过一台输出250 W的单相全桥并网逆变器试验样机,验证了理论分析的可行性。对于优化全桥并网逆变器的设计具有一定的意义。  相似文献   

8.
介绍了反激逆变器的工作原理,研究了反激逆变器的损耗分析方法。针对逆变器的主要器件,推导了相应的损耗计算公式。最后通过试验样机验证了理论分析的可行性,对于优化交错反激微功率光伏并网逆变器的设计具有一定的指导意义。  相似文献   

9.
三相非隔离型光伏并网逆变器共模电流分析   总被引:1,自引:0,他引:1  
详细地分析了三相非隔离型光伏并网逆变器共模电流的模型和产生原理,并得出了抑制共模电流的一般规律.利用该规律对几种不同的三相无变压器型光伏并网逆变器进行了分析和仿真研究,并比较了它们的不同点.  相似文献   

10.
漏电流是研究非隔离型光伏并网系统的一个重要问题.漏电流谐振电路等效模型的建立对研究抑制漏电流至关重要.本文首先推导单相全桥并网逆变器漏电流谐振回路等效电路模型;然后详细分析了不同开关调制方式和滤波电感不对称分布对漏电流的影响,并指出电网电压对漏电流的影响不可忽略;最后介绍了一种新型无变压器拓扑结构,这种结构具有单极性调制和双极性调制优点,能够抑制共模漏电流的产生,同时提高系统的效率和并网电流质量.通过仿真和实验验证了分析结果的正确性.  相似文献   

11.
针对单相非隔离光伏并网逆变器在无功补偿时存在着并网电流在电网电压过零点处畸变的问题,提出一种新的调制策略,即工频开关管在正功部分采用有功调制,而在负功部分采用单极性调制,能较好地解决过零点畸变的问题。通过实验验证了该方法的有效件.并能满足VDE-AR-N4105认证要求。  相似文献   

12.
胡建雨  肖文勋 《电源学报》2020,18(5):118-124
为了提高光伏并网逆变器转换效率并解决漏电流问题,提出一种新型的交错并联型单相非隔离MOSFET并网逆变器。引入了交错并联技术,在不提高开关频率的情况下,可以使逆变器输出纹波电流减小,提高系统的功率密度。在续流阶段电流不流经体二极管,因此可以使用MOSFET,相比于IGBT具有更低的开关损耗。采用单极性调制策略,电感纹波电流小,同时无桥臂直通问题。设计制作了一台2kW的原型机,实验结果表明所提出的拓扑具有良好的漏电流抑制能力,和较高的效率,验证了理论分析的正确性。  相似文献   

13.
针对单相非隔离光伏并网逆变器具有的漏电流问题,对单相非隔离半桥型和全桥型两大类拓扑进行拓扑演化推导,建立了一个桥式拓扑演化网络,研究分析了单相非隔离光伏并网逆变器拓扑的特点,明确了拓扑之间的相互联系,总结出各种桥式拓扑之间的演化规律。并利用总结出的演化规律推导出一种新型拓扑,进一步证明了所提出的演化规律。最后通过PSIM仿真软件进行验证,证明了所提出新型拓扑所具有的漏电流抑制功能的有效性和演化规律的正确性。  相似文献   

14.
霍燕宁  王利强  陈超 《电源学报》2016,14(1):109-113
为了提高光伏并网逆变器的效率,逆变器中的功率半导体器件往往采用较快的开关速度以降低其开关损耗。但提高开关速度会导致电路中的di/dt增大,产生的干扰相应增加,造成逆变器的传导骚扰、电磁辐射骚扰很难通过相应的标准。首先,以中型功率光伏并网逆变器为例,分析并查找辐射骚扰源;然后,通过对机箱进行屏蔽,降低电源线共模电流等方法,使逆变器的电磁辐射骚扰通过标准限值要求。  相似文献   

15.
将非隔离型三电平并网逆变器的LCL滤波器电容公共点直接引回直流侧中点,可以有效减小漏电流,但同时也会导致桥臂电流有效值增大且易发生共模谐振,降低了逆变器效率和稳定性。对于诸如光伏并网发电场合,建立了非隔离型三电平并网逆变器的共模和差模等效模型,在此基础上分析上述问题的产生机理,并提出一种基于共模差模解耦的输出滤波器设计方案。该方案首先在结构上将滤波电容分为并联的两部分,仅将其中容值较小的电容公共点引回直流侧中点以降低共模和差模滤波回路之间的参数耦合程度;其次在分析逆变器桥臂电流纹波和输出共模源频谱分布的基础上,给出所提滤波器的参数设计原则。最后,通过一台5kW三相三电平逆变器样机对所提滤波器优化设计方案进行实验验证,结果表明所提方案在满足并网标准和漏电流抑制要求的同时,能够有效提高系统稳定性和效率。  相似文献   

16.
基于Z源逆变器的光伏并网系统,其工作特点及控制结构不同于传统的电压型逆变器,可以利用逆变器桥臂直通状态实现升压功能,从而满足光伏电池电压大范围变化场合下的并网要求.对控制系统进行了详细的设计和分析,研究了一种加入直通零矢量的Z源变流器串联双环控制方案,实现了最大功率点跟踪(MPPT)和并网控制.最后,以3 kW的Z源变换器装置进行实验.实验结果验证了该控制方案的正确性.  相似文献   

17.
分析了一种并网逆变器的功率跟踪控制方案.由于采用自抗扰控制器(ADRC),输出电流能够很好地跟踪电网电压,并能实现最大功率点跟踪(MPPT).通过对电流的闭环跟踪控制,实现了单位功率因数运行,并向电网馈送电能.实验表明,采用ADRC,稳定快速,输出电流超调小,能够有效地抑制各种扰动,且启动性能与稳定性能都要优于常规控制器.  相似文献   

18.
吴辉  林芳  刘鸿鹏  王卫 《电源学报》2013,11(1):84-88
准确、实时地检测电网电压及并网电流对光伏并网逆变器的可靠运行具有重要的指导意义。着重分析了Z源光伏并网逆变器的电能质量分析系统的软件实现方法,通过对电网电压及并网电流的数据采样和处理,得到有效值、有功功率、无功功率等电力参数,并采用快速傅里叶变换(FFT)算法实现并网电流THD的计算。实验结果证明了理论分析和软件设计方案的正确性。  相似文献   

19.
赵铭洋  崔朝晖  代云中 《电气传动》2021,51(23):21-26,38
为了抑制现有倍频双降压式光伏并网逆变器高频共模漏电流,同时为了改善其效率,首先,提出了一种新型无变压器型倍频DPGCI拓扑及其双极性倍频正弦脉冲宽度调制策略;然后,通过建立无变压器型倍频DPGCI的高频共模等效模型,对其工作模态和共模漏电流进行了详细分析;最后,搭建实验平台对所提逆变器电路进行实验研究.研究结果表明,无变压器型倍频DPGCI的高频共模漏电流得到了有效抑制,同时其还具有等效开关频率高、纹波电流小和效率高等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号