首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue properties of a transformation-induced plasticity-aided martensitic steel subjected to vacuum carburisation under carbon potentials ranging from 0.70 to 0.80 mass% and subsequent fine-particle peening were investigated for the fabrication of precision transmission gears. The fatigue limits of smooth specimens increased by 34–41% with increasing carbon potential, compared with that of heat-treated and fine-particle peened steel. The notched fatigue limits increased to a lesser degree except in case of carbon potential of 0.70 mass%. The increased smooth fatigue limits were associated with the high Vickers hardness and compressive residual stress via severe plastic deformation and the strain-induced martensitic transformation during fine-particle peening, as well as a 50% reduction of retained austenite fraction during fatigue deformation.  相似文献   

2.
3.
为确定适合描述高强度热轧钢板变形行为的屈服准则,采用Hollomon流动应力方程和三种屈服准则对几类高强度热轧钢板在不同应变路径下达到成形极限的成形过程进行了模拟.比较了Barlat(1989)、Hill(1948)、Barlat六参数3种屈服准则,对热轧酸洗板QStE340TM、SAPH370和热轧镀锌板ZStE260P在单向拉伸、平面应变和双向等拉3种应变路径下的变形过程进行了比较.结果表明,Barlat(1989)屈服准则能较好地描述单元的变形行为,且在平面应变路径下的模拟结果最符合实验结果.  相似文献   

4.
Abstract

The potential of fretting fatigue strength enhancement by a duplex surface engineering process involving shot peening of plasma nitrided steel, termed duplex SP/PN, is demonstrated. Specimens of 709M40 steel were individually plasma nitrided, shot peened, or duplex SP/PN treated. Fretting fatigue properties of the surface engineered specimens were evaluated. Surface roughness, residual stress, and hardening effect following the various surface treatments were examined and compared. It has been found that the duplex treatment can significantly improve the fretting fatigue strength of the investigated low alloy steel. Under the present testing conditions, the duplex SP/PN treatment increased the fretting fatigue strength (at 107 cycles) of 709M40 steel by more than 70% relative to the nitrided, 120% to the shot peened, and 500% to the untreated steel. The improvement has been explained in terms of the significantly increased surface hardness and compressive residual stress in the near surface region following the duplex SP/PN treatment. By analysing the stress distributions in a shot peened surface, the influence of surface roughness on fretting fatigue strength is also discussed.  相似文献   

5.
6.
7.
为改善马氏体不锈钢的强塑性和耐蚀性,设计制备了Si含量不同的两种氮合金化马氏体不锈钢10Cr13N钢和10Cr13Si2N钢.对实验钢进行了改变配分时间但恒定淬火终止温度和配分温度的淬火-配分处理,从显微组织和力学性能的变化规律探究添加Si元素的作用与机理.结果表明:实验钢淬火-配分处理后得到板条马氏体加残余奥氏体为主的复相组织,其强塑性配合显著高于淬火-回火状态.随配分时间的延长,两种钢组织中残余奥氏体的含量呈现先上升后下降的极值规律,这一变化对强度影响不大,但对伸长率影响较为显著.增加钢中的Si含量,有利于抑制马氏体中碳氮化物析出并提高残余奥氏体含量和稳定性,在使钢的冲击韧性略微下降的同时可显著改善钢的变形能力.  相似文献   

8.
9.
We proposed a method for the treatment of VT9 alloy, which increases its conventional yield strength by 25% and ultimate strength by 15% at 400–550°C as compared with the traditional strengthening treatment. This method consists of the saturation of blanks with hydrogen, and their deformation, quenching, aging, and dehydrogenating vacuum annealing. Since the growth of strength characteristics is connected with the formation of a special structural state in the alloy, we describe the results of its investigation after each stage of treatment. In this alloy, one can obtain a fine-grained lamellar microstructure with a size of β-grains of 20 to 40 μm and the α-phase, whose composition is close to ordered Ti3Al intermetallic compound. The structural state and properties of the alloy remain invariable after its additional holding at 500°C for 100 h. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 44, No. 3, pp. 67–72, May–June, 2008.  相似文献   

10.
Titanium is a lightweight metal with an outstanding combination of properties which make it the material of choice for many different applications. Nonetheless, its employment at industrial level is not widespread due to higher production costs with respect to competitor metals like steel and aluminium. In this work the production of low-cost titanium alloys is attempted by combining the utilisation of a powder metallurgy process and cheap alloying elements (i.e. commercial 430 stainless steel powder optimised for the powder metallurgy industry). Low-cost titanium alloys are fabricated by blending elemental titanium with stainless steel. The behaviour of the powders as well as that of the sintered materials are analysed and compared to that of a master alloy addition Ti6Al4V alloy. The produced low-cost titanium alloys show comparable properties to both wrought and powder metallurgy titanium alloys and, therefore, they are proposed as an alternative to obtain structural component made out of titanium alloys.  相似文献   

11.
12.
The performance of PcBN cutting tool during its application in the mass production of components made from AISI 440B stainless steel has been considered. The experimental tests have been performed at cutting speed ranging between 350–500 m/min at dry cutting conditions. The machining operations that have been explored included facing, turning, grooving and boring and the 3D topography of the machined surface are presented. The results show that good surface finish similar to grinding and dimensional accuracy can be achieved with PcBN tools.  相似文献   

13.
This paper presents the effects of various amounts of steel fibers on the behaviour of eccentrically loaded high strength reinforced concrete columns. A total of 14 both short and slender square section steel fiber and plain high strength reinforced concrete column specimens were constructed and tested to investigate the addition of steel fibers on load–deflection behaviour, ultimate strength capacity, ductility and confinement. The complete nonlinear experimental stress–strain relationships of steel fiber and plain high strength concrete were obtained for different concrete strengths. In the study, a theoretical procedure considering the nonlinear behaviour of the materials is proposed for ultimate strength analysis and load–deflection behaviour of eccentrically loaded columns including slenderness effect. The complete experimental and theoretical biaxial load–deflection curves of the column specimens have been obtained and reported in the paper. The column specimens and some steel fiber columns available in the literature have been analysed for the ultimate strength capacities. Good agreement has been achieved between the analysis and the test results.  相似文献   

14.
In recent years, ultrahigh-strength steels, which can be employed successfully at yield strengths of 1400 MPa or higher, have been used increasingly for critical structural applications in aircraft and aerospace vehicles. Most recently, there has been increased demand, however, for ultrahigh-strength steel with superior plane-strain fracture toughness, K IC, and for the steels suitable for large-sized structural applications; isotropy regarding the property has especially been required. One potential solution to this problem is to control nonmetallic inclusions of the steels. This review concentrates on recent topics concerning improved K IC of ultrahigh-strength steels, i.e. low-alloy and highly alloyed secondary hardening steels, through control of non-metallic inclusions. The major factors controlling the property are discussed for each of the techniques.  相似文献   

15.
16.
The effects of titanium ion implantation on the stress corrosion cracking (SCC) behaviour of 304 austenitic stainless steel were studied. Slow strain rate tests (SSRTs) were conducted on 304 steel in air and in 5?wt-% NaCl solution. The microscopic effects of ion implantation were evaluated by Stopping and Range of Ions in Matter Procedures (SRIM). Fracture morphologies and microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The fracture surfaces illustrate that ion implantation significantly inhibits the corrosion pits that initiate SCC. A dense passive film, which inhibits SCC, was formed during the ion implantation process. SCC initiation was restrained due to the dense dislocation nets that were generated by titanium ion implantation.

Highlights
  • Ion implantation inhibits SCC susceptibility.

  • The lack of Cr at the grain boundary leads to the expansion of SCC along the grain boundary.

  • Implantation-induced damage leads to high-density dislocations.

  • The surface was amorphised due to high-density dislocations.

  相似文献   

17.
Abstract

Studies of minor phase evolution in a 12CrMoVNb martensitic steel, creep tested for durations of up to 100000 h at 550°C and 600°C, have revealed the presence of a hitherto unknown complex nitride precipitate having a tetragonal unit cell similar to that of Z phase, previously only reported in certain niobium bearing austenitic steels. This paper describes the electron diffraction and X-ray microanalysis studies leading to the discovery of this phase, and the conclusion that it is a new form of Z phase enriched in vanadium. A modified crystallographic model is proposed for this new complex nitride phase, as are the precipitation sequences leading to its formation.

MST/3575  相似文献   

18.
Impurities control phase stability and phase transformations in natural and man-made materials, from shape-memory alloys to steel to planetary cores. Experiments and empirical databases are still central to tuning the impurity effects. What is missing is a broad theoretical underpinning. Consider, for example, the titanium martensitic transformations: diffusionless structural transformations proceeding near the speed of sound. Pure titanium transforms from ductile alpha to brittle omega at 9 GPa, creating serious technological problems for beta-stabilized titanium alloys. Impurities in the titanium alloys A-70 and Ti-6Al-4V (wt%) suppress the transformation up to at least 35 GPa, increasing their technological utility as lightweight materials in aerospace applications. These and other empirical discoveries in technological materials call for broad theoretical understanding. Impurities pose two theoretical challenges: the effect on the relative phase stability, and the energy barrier of the transformation. Ab initio methods calculate both changes due to impurities. We show that interstitial oxygen, nitrogen and carbon retard the transformation whereas substitutional aluminium and vanadium influence the transformation by changing the d-electron concentration. The resulting microscopic picture explains the suppression of the transformation in commercial A-70 and Ti-6Al-4V alloys. In general, the effect of impurities on relative energies and energy barriers is central to understanding structural phase transformations.  相似文献   

19.
The paper is aimed at finding the likely failure mechanism of a bridge roller bearing made of high strength martensitic stainless steel. Spectroscopy and finite element stress analysis of the roller indicated that an initial radial surface crack, found at an end face of the roller and close to the contact region, was induced by stress corrosion cracking (SCC). The initial crack subsequently changed shape and increased in size under growth through fatigue and finally formed a quarter-circle radial crack centred on the end face corner of the roller. Numerically computed stress intensity factors for the final crack showed that crack loading was predominantly in Mode II. For a crack size as observed on the fracture surface, the maximum service load, as specified by the manufacturer, enhanced by a certain roller bearing misalignment effect, was sufficient for failure through fracture.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号