首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is currently a great interest in identifying laminin isoforms expressed in developing and regenerating skeletal muscle. Laminin alpha1 has been reported to localize to human fetal muscle and to be induced in muscular dystrophies based on immunohistochemistry with the monoclonal antibody 4C7, suggested to recognize the human laminin alpha1 chain. Nevertheless, there seems to be no expression of laminin alpha1 protein or mRNA in developing or dystrophic mouse skeletal muscle fibers. To address the discrepancy between the results obtained in developing and dystrophic human and mouse muscle we expressed the E3 domain of human laminin alpha1 chain as a recombinant protein and made antibodies specific for human laminin alpha1 chain (anti-hLN-alpha1G4/G5). We also made antibodies to the human laminin alpha5 chain purified from placenta. In the present report we show that hLN-alpha1G4/G5 antibodies react with a 400-kDa laminin alpha1 chain and that 4C7 reacts with a 380-kDa laminin alpha5 chain. Immunohistochemistry with the hLN-alpha1G4/G5 antibody and 4C7 revealed that the two antibodies stained human kidney, developing and dystrophic muscle in distinct patterns. Our data indicate that the previously reported expression patterns in developing, adult, and dystrophic human muscle tissues with 4C7 should be re-interpreted as an expression of laminin alpha5 chain. Our data are also consistent with earlier work in mouse, indicating that laminin alpha1 is largely an epithelial laminin chain not present in developing or dystrophic muscle fibers.  相似文献   

2.
The dy/dy mouse is an animal model for human merosin-negative congenital muscular dystrophy (CMD), which has been reported to have reduced or no expression of the basement membrane protein laminin alpha2. We here investigate various myogenic and nonmyogenic tissues of mature dy/dy and control 129ReJ mice histologically and for laminin alpha2 expression. In addition, expression patterns of laminin alpha1, alpha2, alpha4, and alpha5 chains, the interstitial proteins fibronectin and tenascin-C, and the adhesion molecules VCAM-1, ICAM-1, and alpha4 integrin were characterized in skeletal muscle of 1- and 7-day and mature (>6 weeks old) dy/dy and control 129ReJ mice. The laminin alpha2 chain remained detectable in myogenic tissues of dy/dy mice by immunofluorescence using two different monoclonal antibodies and by Northern blot analysis. However, laminin alpha2 expression was significantly reduced or not detectable in nonmyogenic tissues of dy/dy mice, including skin, lung, kidney, brain, thymus, and eye. Focal lesions were observed in mature skeletal muscle only, characterized by necrotic tissue, isolated VCAM-1- and ICAM-1-positive cells indicative of inflammatory processes, and regenerating muscle fibers surrounded by intense tenascin-C and fibronectin expression. In contrast to studies on human CMD muscle, laminin alpha1 was not detectable in either dy/dy or control skeletal muscle using immunofluorescence or Northern blot analysis. Immunofluorescence localized laminin alpha4 to basement membranes of blood vessels, the endoneurium of the intramuscular nerves, and the neuromuscular junction in skeletal muscle of 1- and 7-day-old dy/dy and control mice. In mature muscle, laminin alpha4 expression shifted to the perineurium of intramuscular nerves in both dy/dy and control mice. Furthermore, strong upregulation of laminin alpha4 in the basement membranes of blood vessels, the perineurium of intramuscular nerves, and of isolated regenerating muscle fibers in the dy/dy mice was apparent. Investigation of 1-day-old animals revealed expression of laminin alpha5 in skeletal muscle fiber basement membranes of dy/dy but not control animals. This difference between dy/dy and control animals was no longer apparent at 7 days after birth, indicating a temporary shift in expression pattern of laminin alpha5 in dy/dy animals. Analysis of the extracellular matrix components of 1- and 7-day-old dy/dy and control skeletal muscle revealed an early onset of the dystrophy, even before histopathological features of the disease were evident. Our data confirm the absence of laminin alpha1 chain in myogenic tissues of both dy/dy and control mice and suggest compensation for reduced laminin alpha2 in dy/dy skeletal muscle by laminin alpha4 and, in early development, also laminin alpha5. These results have significant ramifications in the diagnosis of human merosin-negative CMD.  相似文献   

3.
The alpha-dystroglycan binding properties of laminins extracted from fully differentiated skeletal muscle were characterized. We observed that the laminins expressed predominantly in normal adult rat or mouse skeletal muscle bound alpha-dystroglycan in a Ca2+-dependent, ionic strength-sensitive, but heparin-insensitive manner as we had observed previously with purified placental merosin (Pall, E. A., Bolton, K. M., and Ervasti, J. M. 1996 J. Biol. Chem. 271, 3817-3821). Rat skeletal muscle laminins partially purified by heparin-agarose affinity chromatography also bound alpha-dystroglycan without sensitivity to heparin. We also confirm previous studies of dystrophic dy/dy mouse skeletal muscle showing that the alpha2 chain of merosin is reduced markedly and that the laminin alpha1 chain is not up-regulated detectably. However, we further observed a quantitative decrease in the expression of laminin beta/gamma chain immunoreactivity in alpha2 chain-deficient dy/dy skeletal muscle and reduced alpha-dystroglycan binding activity in laminin extracts from dy/dy muscle. Most interestingly, the alpha-dystroglycan binding activity of residual laminins expressed in merosin-deficient dy/dy skeletal muscle was inhibited dramatically (69 +/- 19%) by heparin. These results identify a potentially important biochemical difference between the laminins expressed in normal and dy/dy skeletal muscle which may provide a molecular basis for the inability of other laminin variants to compensate fully for the deficiency of merosin in some forms of muscular dystrophy.  相似文献   

4.
Laminins, the main components of basement membranes, are heterotrimers consisting of alpha, beta, and gamma polypeptide chains linked together by disulfide bonds. Laminins-1 and -2 are both composed of beta1 and gamma1 chains and differ from each other on their alpha chain, which is alpha1 and alpha2 for laminin-1 and -2, respectively. The present study shows that whereas laminins-1 and -2 are synthesized in the mouse developing lung and in epithelial-mesenchymal cocultures derived from it, epithelial and mesenchymal monocultures lose their ability to synthesize the laminin alpha1 chain. Synthesis of laminin alpha1 chain however returns upon re-establishment of epithelial-mesenchymal contact. Cell-cell contact is critical, since laminin alpha1 chain is not detected in monocultures exposed to coculture-conditioned medium or in epithelial-mesenchymal cocultures in which heterotypic cell-cell contact is prevented by an interposing filter. Immunohistochemical studies on cocultures treated with brefeldin A, an inhibitor of protein secretion, indicated both epithelial and mesenchymal cells synthesize laminin alpha1 chain upon heterotypic cell- cell contact. In a set of functional studies, embryonic lung explants were cultured in the presence of monoclonal antibodies to laminin alpha1, alpha2, and beta/gamma chains. Lung explants exposed to monoclonal antibodies to laminin alpha1 chain exhibited alterations in peribronchial cell shape and decreased smooth muscle development, as indicated by low levels of smooth muscle alpha actin and desmin. Taken together, our studies suggest that laminin alpha1 chain synthesis is regulated by epithelial-mesenchymal interaction and may play a role in airway smooth muscle development.  相似文献   

5.
Laminins are a family of basement membrane-associated heterotrimeric proteins that are important in mediating the growth, migration, and differentiation of a variety of cell types. The beta 2 subunit chain is a component of several laminin isoforms, e.g., laminin-3, laminin-4, laminin-7, and possibly other, as yet uncharacterized laminin isoforms. Utilizing monoclonal antibodies directed against the beta 2 subunit chain of laminin, we detected this protein in fetal, neonatal, and adult lung tissues. The relative amount of laminin beta 2 subunit chain in fetal lung tissue increased as gestation proceeded, reaching its peak around the time of alveolar type II cell differentiation in the rabbit. The laminin beta 2 subunit chain was localized in early gestational age rabbit fetal lung tissue primarily in basement membranes of prealveolar ducts, airways, and smooth muscle cells of airways and arterial blood vessels. A rabbit laminin beta 2 cDNA was generated using RT-PCR and utilized as a probe in northern blot analysis to characterize the levels of laminin beta 2 mRNA in developing rabbit lung tissue. Similar to the pattern of laminin beta 2 protein induction observed in fetal lung tissue, laminin beta 2 mRNA levels were maximal late in gestation. Utilizing a laminin beta 2 chain cRNA probe and in situ hybridization, we detected laminin beta 2 mRNA in the epithelial cells of prealveolar ducts, the alveolar wall, and airways, as well as in connective tissue cells, and the smooth muscle cells of airways and blood vessels in fetal and adult lung tissues. In addition, using an in vitro explant model, we determined that alveolar type II cells are capable of synthesizing laminin beta 2 subunit mRNA and depositing this laminin subunit chain in the basement membrane beneath type II cells. The results of this study are suggestive that the laminin beta 2 chain may be involved in alveolar epithelial cell differentiation.  相似文献   

6.
The laminin binding alpha 7 beta 1 integrin has been described as a major integrin in skeletal muscle. The RNA coding for the cytoplasmic domain of alpha 7 integrin undergoes alternative splicing to generate two major forms, denoted alpha 7A and alpha 7B. In the current paper, we have examined the developmental expression patterns of the alpha 7A and alpha 7B splice variants in the mouse. The alpha 7 integrin expression is compared to that of the nonintegrin laminin receptor dystroglycan and to that of laminin-alpha 1 and laminin-alpha 2 chains. Alpha 7A integrin was found by in situ hybridization to be specific to skeletal muscle. Antibodies specific for alpha 7B integrin and in situ hybridization revealed the presence of alpha 7 mRNA and alpha 7B protein in the E10 myotome and later in primary and secondary myotubes. In the heart, alpha 7B integrin was not detectable in the endocardium or myocardium during embryonic and fetal heart development. Northern blot analysis and immunohistochemistry revealed a postnatal induction of alpha 7B in the myocardium. In addition to striated muscle, alpha 7B integrin was localized to previously unreported nonmuscle locations such as a subset of vascular endothelia and restricted sites in the nervous system. Comparison of the alpha 7 integrin expression pattern with that of different laminin isoforms and dystroglycan revealed a coordinated temporal expression of dystroglycan, alpha 7 integrin, and laminin-alpha 2, but not laminin-alpha 1, in the forming skeletal muscle. We conclude that the alpha 7A and alpha 7B integrin variants are expressed in a developmentally regulated, tissue-specific pattern suggesting different functions for the two splice forms.  相似文献   

7.
8.
The nature of the laminin alpha chains in the embryonic and adult kidney is still being debated. The present study attempted to clarify this issue by immunofluorescence study using monoclonal antibodies against mouse alpha1, alpha2, and alpha5 chains and in situ hybridization for the alpha2, alpha3B, alpha4, and alpha5 mRNAs. Novel alpha1 chain-specific monoclonal antibodies against E8 fragment revealed a restricted distribution of alpha1 chain in a subset of epithelial basement membranes in the embryo, in agreement with previous mRNA data. The alpha2 mRNA was produced by mesenchyme, although the protein was deposited in epithelial basement membranes. The alpha3B mRNA was found only in a small subset of endothelial cells. The alpha4 mRNA was found transiently in embryonic mesenchyme, with particularly high levels in condensed mesenchyme, close to the tips of the ureteric tree where tubulogenesis is initiated. The alpha5 mRNA was strongly expressed by ureter epithelium but not expressed at early stages of tubulogenesis. Immunofluorescence verified low levels of the alpha5 chain in the early stages of tubulogenesis. However, during the capillary loop stage, the alpha5 chain became strongly expressed in the developing glomerular basement membrane, which matches the in situ hybridization results. During subsequent maturation of the kidney, the alpha5 chain became ubiquitously expressed in basement membranes. Overall, the alpha5 chain exhibited the broadest pattern of expression, followed by the alpha1 chain, particularly in the adult stage. These chains were the only ones produced by epithelial cells. Although some basement membranes contained several alpha chains, we failed to detect any of the five studied chains in some basement membranes. Thus, the identity of the alpha chains of many embryonic kidney blood vessels and several basement membranes in the inner medulla in the developing and adult kidney remain unclear.  相似文献   

9.
10.
Laminins, heterotrimers of alpha, beta, and gamma chains, are prominent constituents of basal laminae (BLs) throughout the body. Previous studies have shown that laminins affect both myogenesis and synaptogenesis in skeletal muscle. Here we have studied the distribution of the 10 known laminin chains in muscle and peripheral nerve, and assayed the ability of several heterotrimers to affect the outgrowth of motor axons. We show that cultured muscle cells express four different alpha chains (alpha1, alpha2, alpha4, and alpha5), and that developing muscles incorporate all four into BLs. The portion of the muscle's BL that occupies the synaptic cleft contains at least three alpha chains and two beta chains, but each is regulated differently. Initially, the alpha2, alpha4, alpha5, and beta1 chains are present both extrasynaptically and synaptically, whereas beta2 is restricted to synaptic BL from its first appearance. As development proceeds, alpha2 remains broadly distributed, whereas alpha4 and alpha5 are lost from extrasynaptic BL and beta1 from synaptic BL. In adults, alpha4 is restricted to primary synaptic clefts whereas alpha5 is present in both primary and secondary clefts. Thus, adult extrasynaptic BL is rich in laminin 2 (alpha2beta1gamma1), and synaptic BL contains laminins 4 (alpha2beta2gamma1), 9 (alpha4beta2gamma1), and 11 (alpha5beta2gamma1). Likewise, in cultured muscle cells, alpha2 and beta1 are broadly distributed but alpha5 and beta2 are concentrated at acetylcholine receptor-rich "hot spots," even in the absence of nerves. The endoneurial and perineurial BLs of peripheral nerve also contain distinct laminin chains: alpha2, beta1, gamma1, and alpha4, alpha5, beta2, gamma1, respectively. Mutation of the laminin alpha2 or beta2 genes in mice not only leads to loss of the respective chains in both nerve and muscle, but also to coordinate loss and compensatory upregulation of other chains. Notably, loss of beta2 from synaptic BL in beta2(-/-) "knockout" mice is accompanied by loss of alpha5, and decreased levels of alpha2 in dystrophic alpha2(dy/dy) mice are accompanied by compensatory retention of alpha4. Finally, we show that motor axons respond in distinct ways to different laminin heterotrimers: they grow freely between laminin 1 (alpha1beta1gamma1) and laminin 2, fail to cross from laminin 4 to laminin 1, and stop upon contacting laminin 11. The ability of laminin 11 to serve as a stop signal for growing axons explains, in part, axonal behaviors observed at developing and regenerating synapses in vivo.  相似文献   

11.
We studied the distribution of laminin beta 2 chain in the skeletal muscle basement membrane of 16 patients with congenital muscular dystrophy (CMD) by immunohistochemistry. A dramatic reduction in the laminin beta 2 staining was observed in four patients with classical merosin-negative CMD. A moderate reduction of laminin beta 2 labelling was observed in four patients with partial merosin deficiency and two patients with merosin-positive CMD. Two patients with merosin-positive CMD had no apparent changes in the expression of laminin beta 2. In three patients and one fetus diagnosed as Walker-Warburg syndrome (WWS) the laminin beta 2 pattern was similar to normal controls. We conclude that a primary deficiency in the laminin alpha 2 chain may lead to a vast or moderate reduction in the laminin beta 2 chain in the skeletal muscle membrane.  相似文献   

12.
BACKGROUND: Laminin 2 is a major component of the basal lamina of skeletal muscle cells. It is a heterotrimer composed of 3 chains: merosin (laminin alpha 2 chain), beta 1, and gamma 1. Deficiency of merosin, with or without laminin beta 1 chain reduction, is associated with some forms of congenital muscular dystrophy. Deficient expression of laminin beta 1 chain is also associated with some cases of merosin-positive congenital muscular dystrophy. The expression of laminin 2 subunits has not been well studied in the skeletal muscle of limb-girdle muscular dystrophy (LGMD), nor has much attention been given to the significance of reduction of individual laminin 2 subunits, such as beta 1. OBJECTIVES: To examine the expression of laminin 2 subunits in skeletal muscle in patients with LGMD and to define the clinical features of patients with LGMD who have abnormal expression of laminin 2 subunits. METHODS: We studied muscle biopsy specimens from 18 patients with LGMD using immunofluorescence with antibodies against dystrophin C-terminus, beta-dystroglycan, alpha-sarcoglycan, gamma-sarcoglycan, and the laminin subunits merosin, beta 1, and gamma 1. Of the 18 biopsy specimens, 9 were available for electron microscopic examination of the muscle basement membrane. The clinical features associated with abnormal laminin beta 1 chain immunoreactivity were further described. RESULTS: Laminin beta 1 chain was either barely detectable or severely reduced in 3 cases of patients with LGMD in which the biopsy specimens showed normal staining with the other antibodies. Patients in all 3 cases had common clinical features consistent with a slowly progressive, adult-onset LGMD. Specimens from 2 of the 3 cases that were available for ultrastructural examination showed significant abnormalities of the muscle fiber basement membrane. CONCLUSIONS: Abnormal expression of laminin beta 1 chain without concomitant deficiency of alpha-sarcoglycan in skeletal muscle has not been previously described in LGMD. Reduced laminin beta 1 chain immunoreactivity may potentially serve as a marker for defining subsets of individuals with LGMD, in particular those with slowly progressive, adult-onset pelvifemoral presentation. The abnormality of muscle fiber basement membranes in specimens from cases that were available for ultrastructural study suggests that defects in the extracellular matrix may play a role in the pathogenesis of this subset of LGMD.  相似文献   

13.
During the early development of skeletal muscle, cardiac isotypes of several contractile proteins are known to be transiently expressed. We report here that skeletal muscle developing in vivo, as well as primary cultures derived from skeletal muscle, express mRNA encoding the cardiac dihydropyridine-sensitive calcium channel. The mRNA is detectable at high concentration at the earliest stage tested in vivo and diminishes rapidly in concentration as myofibers mature. The concentration of the cardiac calcium channel mRNA also diminishes during the in vivo development of skeletal muscle in a genetically paralyzed mouse (mdg), indicating that muscle contractile activity is not necessary for the down-regulation. In contrast, mRNA for the skeletal muscle-specific calcium channel accumulates gradually in developing skeletal muscle. A similar temporal pattern of expression is also seen in primary cultures of skeletal myotubes. These results raise the question of whether the cardiac calcium channel may be functionally important during the early development of skeletal myofibers.  相似文献   

14.
15.
Extracellular glutathione peroxidase (EGPx) is a secreted selenium-dependent enzyme that reduces hydroperoxides and organic hydroperoxides. Selenium deficiency in females is associated with infertility and spontaneous abortion, suggesting a role for selenium-requiring proteins during embryonic development. To gain insight into functions of EGPx in vivo, we determined sites of murine EGPx synthesis by in situ hybridization during embryogenesis and in adult tissues. At E7.5 of development, high EGPx expression was found in the maternally derived deciduum, with lower levels of accumulation in the embryonic visceral endoderm. At E9.5, the major sites of expression were the yolk sac endoderm and heart musculature. By E16.5, EGPx mRNA expression persisted in yolk sac endoderm but also accumulated significantly in atrially derived myocytes, ossification centers, adipose tissue, intestinal epithelium, and in a ventral-to-dorsal gradient in developing skin. Glutathione peroxidase activity due to EGPx protein was identified in the fluids surrounding the developing mouse embryo at midgestation. The expression of EGPx in tissues at the maternal-fetal interface--deciduum, visceral yolk sac, and skin--suggests that EGPx may serve to protect the embryo from oxidant damage. In adult mice, we identified the S1 segment of the kidney proximal tubules as the primary site of EGPx mRNA accumulation, with lower EGPx levels in atrial cardiac muscle, intestine, skin, and adipose tissue. These findings suggest that EGPx may serve a wider antioxidant role than previously recognized in the interstitium of multiple localized tissues, particularly those associated with the active transport of lipids.  相似文献   

16.
17.
beta 1D is a recently identified isoform of the beta 1 integrin subunit selectively expressed in skeletal and cardiac muscles. In the present study we determined the temporal expression of beta 1D and its association with alpha subunits during mouse development. By immunohistochemistry and western blot analysis we demonstrated that beta 1D begins to be expressed in skeletal muscles of 17 days embryo (stage E17). Its level progressively increases reaching maximal values few days after birth and remaining high in adult mice. At earlier stages of development (E11-E17) the beta 1A isoform is expressed in skeletal muscle cells. After E17 beta 1A is downregulated and disappears from muscle fibers few days after birth. In cardiac muscle the regulation of the beta 1D expression is different: beta 1D and beta 1A are coexpressed in the heart of E11 embryo. Subsequently expression of beta 1A declines, while beta 1D increases until it becomes the unique beta 1 isoform in cardiomyocytes few days after birth. Previous studies (Belkin et al J. Cell Biol. 132: 211-226, 1996) demonstrated that beta 1D in adult mouse cardiomyocytes is exclusively associated with alpha 7B. Western blot analysis shows that alpha 7B starts to be expressed in the heart only at stage E17, while beta 1D is expressed already at E11 embryo, indicating that alpha subunits other than alpha 7 should associate with beta 1D in early developmental stages. To investigate this aspect, beta 1 associated alpha subunits were identified by western blotting from cardiomyocytes integrin complexes immunoprecipitated with alpha subunit specific antibodies. We found that, during cardiomyocyte development, beta 1D associates with several alpha subunits namely with alpha 5, alpha 6A and alpha 7B. In conclusion these data show that the expression of the beta 1D muscle specific integrin during development occurs much earlier in heart than in skeletal muscle and it can dimerize with different alpha subunits.  相似文献   

18.
Many aspects of myogenesis are believed to be regulated by myoblast interactions with specific components of the extracellular matrix. For example, laminin has been found to promote adhesion, migration, and proliferation of mammalian myoblasts. Based on affinity chromatography, the alpha7beta1 integrin has been presumed to be the major receptor mediating myoblast interactions with laminin. We have prepared a monoclonal antibody, O26, that specifically reacts with both the X1 and the X2 extracellular splice variants of the alpha7 integrin chain. This antibody completely and selectively blocks adhesion and migration of rat L8E63 myoblasts on laminin-1, but not on fibronectin. In contrast, a polyclonal antibody to the fibronectin receptor, alpha5beta1 integrin, blocks myoblast adhesion on fibronectin, but not on laminin-1. The alpha7beta1 integrin also binds to a mixture of laminin-2 and laminin-4, the major laminin isoforms in developing and adult skeletal muscle, but O26 is a much less potent inhibitor of myoblast adhesion on the laminin-2/4 mixture than on laminin-1. Based on affinity chromatography, we suggest that this may be due to higher affinity binding of alpha7X1 to laminin-2/4 than to laminin-1.  相似文献   

19.
Hoxb-5 is one of the few homeobox genes strongly expressed in the developing mouse lung. To explore the hypothesis that Hoxb-5 acts to regulate epithelial cell fate and branching morphogenesis in the developing lung, we studied the temporal, spatial, and cell-specific expression of Hoxb-5 from gestational day (d) 13.5 to postnatal day (P) 2. Immunocytochemistry demonstrated regional localization of Hoxb-5 protein to developing conducting airways and surrounding mesenchyme. The cellular expression pattern changed from diffusely positive nuclei of mesenchymal cells on d13.5 to become more localized to nuclei of subepithelial fibroblasts and some adjacent columnar and cuboidal epithelial cells on d14.5. After d14.5, Hoxb-5 protein expression continued to decrease in mesenchymal cells distal from developing airways, but persisted in fibroblasts underlying conducting airways. Hoxb-5 protein expression persisted in nuclei of columnar and cuboidal epithelial cells on d16.5 and d17.5, with expression in low cuboidal epithelial cells as well from d17.5 to P2. Western blot analysis showed temporal and quantitative changes in Hoxb-5 protein expression with peak expression on d14.5-15.5. We conclude that Hoxb-5 protein is developmentally regulated in a temporal, spatial, and cell-specific manner throughout the pseudoglandular, canalicular, and terminal saccular periods of lung development in the mouse. This localization and expression pattern suggests that Hoxb-5 may influence branching morphogenesis, cell-cell communication, cell fate, and differentiation of conducting airway epithelia.  相似文献   

20.
Undifferentiated mesenchymal cells were isolated from mouse embryonic lungs and plated at subconfluent and confluent densities. During the first 5 hours in culture, all the cells were negative for smooth muscle markers. After 24 hours in culture, the mesenchymal cells that spread synthesized smooth muscle alpha-actin, muscle myosin, desmin and SM22 in levels comparable to those of mature smooth muscle. The cells that did not spread remained negative for smooth muscle markers. SM differentiation was independent of cell-cell contact or proliferation. In additional studies, undifferentiated lung mesenchymal cells were cocultured with lung embryonic epithelial cells at high density. The epithelial cells aggregated into cysts surrounded by mesenchymal cells and a basement membrane was formed between the two cell types. In these cocultures, the mesenchymal cells in contact with the basement membrane spread and differentiated into smooth muscle. The rest of the mesenchymal cells remained round and negative for smooth muscle markers. Inhibition of laminin polymerization by an antibody to the globular regions of laminin beta1/gamma1 chains blocked basement membrane assembly, mesenchymal cell spreading and smooth muscle differentiation. These studies indicated that lung embryonic mesenchymal cells have the potential to differentiate into smooth muscle and the process is triggered by their spreading along the airway basement membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号