首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The regulatory effects of salinity and inorganic nitrogen compounds on nitrification and denitrification were studied in intertidal sandy sediments and rocky biofilms in the Douro River estuary, Portugal, over a 12-month period. Nitrification and denitrification rates were measured in slurries of field samples and enrichment experiments using the difluoromethane and the acetylene inhibition techniques, respectively. Salinity did not regulate denitrification in either environment, suggesting that halotolerant bacteria dominated the denitrifier communities. However, nitrification rates were stimulated when salinity increased from 0 to 15 practical salinity units. NO3- addition experiments revealed that NO3- availability stimulates denitrification rates in sandy sediments, but not in rocky biofilms; however, in rocky biofilms a positive and linear relationship was observed between denitrification rates and water column NO3- concentrations (r=0.92) during the monthly surveys. The N2O:N2 ratios increased rapidly when NO3- increased from 63 to 363 microM; however, results from monthly surveys showed that environmental parameters other than NO3- availability may be important in controlling the variation in N2O production via denitrification. Ammonium additions to sandy sediments stimulated nitrification rates by 35% for the 20 microM NH4+ addition, but NH4+ appeared to inhibit nitrification at high concentration addition (200 microM NH4+). In contrast, rocky biofilm nitrification was stimulated by 65% when 200 microM NH4+ was added.  相似文献   

2.
Gupta AB  Gupta SK 《Water research》2001,35(7):1714-1722
High strength domestic wastewater discharges after no/partial treatment through sewage treatment plants or septic tank seepage field systems have resulted in a large build-up of groundwater nitrates in Rajasthan, India. The groundwater table is very deep and nitrate concentrations of 500-750 mg/l (113-169 as NO3(-)-N) are commonly found. A novel biofilm in a 3-stage lab-scale rotating biological contactor (RBC) was developed by the incorporation of a sulphur oxidising bacterium Thiosphaera pantotropha which exhibited high simultaneous removal of carbon and nitrogen in fully aerobic conditions. T. pantotropha has been shown to be capable of simultaneous heterotrophic nitrification and aerobic denitrification thereby helping the steps of carbon oxidation, nitrification and denitrification to be carried out concurrently. The first stage having T. pantotropha dominated biofilm showed high carbon and NH4(+)-N removal rates of 8.7-25.9 g COD/m2 d and 0.81-1.85 g N/m2 d for the corresponding loadings of 10.0-32.0 g COD/m2 d and 1.0-3.35 g N/m2 d. The ratio of carbon removed to nitrogen removed was close to 12.0. The nitrification rate increased from 0.81 to 1.8 g N/m2 d with the increasing nitrogen loading rates despite a high simultaneous organic loading rate. However, it fell to 1.53 g N/m2 d at a high load of 3.35 g N/m2 d and 32 g COD/m2 d showing a possible inhibition of the process. A simultaneous 44-63% removal of nitrogen was also achieved without any significant NO2(-)-N or NO3(-)-N build-up. The second and third stages, almost devoid of any organic carbon, acted only as autotrophic nitrification units, converting the NH4(+)-N from stage 1 to nitrite and nitrate. Such a system would not need a separate carbon oxidation step to increase nitrification rates and no external carbon source for denitrification. The alkalinity compensation during denitrification for that destroyed in nitrification may also result in a high economy.  相似文献   

3.
The slow leaching of nitrogen from solid waste in landfills, resulting in high concentrations of ammonia in the landfill leachate, may last for several decades. The removal of nitrogen from leachate is desirable as nitrogen can trigger eutrophication in lakes and rivers. In the present study, a low-cost nitrification-denitrification process was developed to reduce nitrogen load especially in leachates from small landfills. Nitrification was studied in laboratory and on-site pilot aerobic biofilters with waste materials as filter media (crushed brick in upflow filters and bulking agent of compost in a downflow filter) while denitrification was studied in a laboratory anoxic/anaerobic column filled with landfill waste. In the laboratory nitrification filters, start-up of nitrification took less than 3 weeks and over 90% nitrification of leachate (NH4-N between 60 and 170mg N l(-1), COD between 230 and 1,300 mg l(-1)) was obtained with loading rates between 100 and 130 mgNH4-N l(-1) d at 25 degrees C. In an on-site pilot study a level of nitrification of leachate (NH4-N between 160 and 270 mg N l(-1), COD between 1,300 and 1,600 mg l(-1)) above 90% was achieved in a crushed brick biofilter with a loading rate of 50mg NH4-N l(-1) d even at temperatures as low as 5-10 degrees C. Ammonium concentrations in all biofilter effluents were usually below the detection limit. In the denitrification column. denitrification started within 2 weeks and total oxidised nitrogen in nitrified leachate (TON between 50 and 150mg N l(-1)) usually declined below the detection limit at 25 degrees C, whereas some ammonium, probably originating from the landfill waste used in the column, was detected in the effluent. No adverse effect was observed on the methanation of waste in the denitrification column with a loading rate of 3.8 g TON-N/t-TS(waste) d. In conclusion, nitrification in a low-cost biofilter followed by denitrification in a landfill body appears applicable for the removal of nitrogen in landfill leachate in colder climates.  相似文献   

4.
厌氧—3级好氧/缺氧生物膜工艺处理农村生活污水   总被引:5,自引:0,他引:5  
对自流式厌氧—3级好氧/缺氧生物膜工艺处理低碳氮比农村生活污水的效能进行了应用研究。装置的处理量为18 m3/d,HRT为2.9 d,厌氧段的水力负荷为0.514 m3/(m3.d),生物球装填率为15%;3级好氧/缺氧生物膜段的水力负荷为1.029 m3/(m3.d),YDT弹性填料的装填率依次为50%、40%和25%,采用跌水充氧。连续8个月的监测结果表明:该工艺对COD、BOD5、NH3-N、TN和TP的去除率分别为73.7%、76.5%、90.7%、59.6%和69.7%;出水COD、BOD5、NH3-N、TN、TP、SS的平均浓度分别在34、15、2、7.7、0.9、5.2 mg/L以下,粪大肠菌群平均为5 200个/L,可用于农业灌溉和观赏性景观河道用水。该工艺的3级好氧/缺氧生物膜段能够同步进行硝化与反硝化除磷,适合于低碳氮比农村生活污水的处理。  相似文献   

5.
Effects of influent COD/N ratio on N2O emission from a biological nitrogen removal process with intermittent aeration, supplied with high-strength wastewater, were investigated with laboratory-scale bioreactors. Furthermore, the mechanism of N2O production in the bioreactor supplied with low COD/N ratio wastewater was studied using 15N tracer method, measuring of reduction rates in denitrification pathway, and conducting batch experiments under denitrifying condition. In steady-state operation, 20-30% of influent nitrogen was emitted as N2O in the bioreactors with influent COD/N ratio less than 3.5. A 15N tracer study showed that this N2O originated from denitrification in anoxic phase. However, N2O reduction capacity of denitrifiers was always larger than NO3(-)-N or NO2(-)-N reduction capacity. It was suggested that a high N2O emission rate under low COD/N ratio operations was mainly due to endogenous denitrification with NO2(-)-N in the later part of anoxic phase. This NO2(-)-N build-up was attributed to the difference between NO3(-)-N and NO2(-)-N reduction capacities, which was the feature observed only in low COD/N ratio operations.  相似文献   

6.
Three rotating disk biofilm reactors were operated to evaluate whether bioaugmentation and biostimulation can be used to improve the start-up of microbial nitrification. The first reactor was bioaugmented during start-up period with an enrichment culture of nitrifying bacteria, the second reactor received a synthetic medium containing NH(4)(+) and NO(2)(-) to facilitate concomitant proliferation of ammonia- and nitrite-oxidizing bacteria, and the third reactor was used as a control. To evaluate the effectiveness of bioaugmentation and biostimulation approaches, time-dependent developments of nitrifying bacterial community and in situ nitrifying activity in biofilms were monitored by fluorescence in situ hybridization (FISH) technique and microelectrode measurements of NH(4)(+), NO(2)(-), NO(3)(-), and O(2). In situ hybridization results revealed that addition of the enrichment culture of nitrifying bacteria significantly facilitated development of dense nitrifying bacterial populations in the biofilm shortly after, which led to a rapid start-up and enhancement of in situ nitrification activity. The inoculated bacteria could proliferate and/or survive in the biofilm. In addition, the addition of nitrifying bacteria increased the abundance of nitrifying bacteria in the surface of the biofilm, resulting in the higher nitrification rate. On the other hand, the addition of 2.1mM NO(2)(-) did not stimulate the growth of nitrite-oxidizing bacteria and did inhibit the proliferation of ammonia-oxidizing bacteria instead. Thus, the start-up of NO(2)(-) oxidation was unchanged, and the start-up of NH(4)(+) oxidation was delayed. In all the three biofilm reactors, data sets of time series analyses on population dynamics of nitrifying bacteria determined by FISH, in situ nitrifying activities determined by microelectrode measurements, and the reactor performances revealed an approximate agreement between the appearance of nitrifying bacteria and the initiation of nitrification activity, suggesting that the combination of these techniques was a very powerful monitoring tool to evaluate the effectiveness of bioaugmentation and biostimulation strategies.  相似文献   

7.
SMSBR去除焦化废水中有机物及氮的特性   总被引:12,自引:3,他引:12  
选用一体化膜—序批式生物反应器 (SubmergedMembraneSequencingBatchReac tor ,简称SMSBR)处理焦化废水 ,考察了能否通过膜分离的强化作用提高生物处理系统对焦化废水的处理效果 ,使出水COD达到新的排放标准 ( <10 0mg/L) ,并提高脱氮效率。研究结果表明 :在HRT为 32 .7h ,平均COD容积负荷为 0 .4 5kg/ (m3·d)的条件下 ,出水COD可以稳定在 10 0mg/L以下 (平均为 86.4mg/L) ;要使COD达到新的排放标准 ,进水COD容积负荷应低于 0 .67kg/ (m3·d) (该负荷下出水COD在 10 0mg/L上下波动 ,平均为 10 6.3mg/L) ;好氧段存在明显的反硝化现象 ,使COD的去除得到强化 ;在保证系统温度、碱度、溶解氧和不受进水COD负荷冲击的情况下 ,出水NH3-N可低于 1mg/L ,但泥龄太长所产生的微生物代谢产物抑制了硝化反应过程中的硝酸盐细菌 ,使好氧段出水NO2 -N/NOx-N平均为 91.1% ,因此系统获得极其稳定高效的短程硝化作用 ,有利于进一步脱氮 ;按“缺氧 1—好氧—缺氧 2”方式运行时 ,若“缺氧 2”的HRT>8.4 4h ,可实现 81.34 %的反硝化率 (外加碳源 :COD/N为 2 .1g/g) ,平均TN去除率为 87.2 % ,最高达 90 .2 %。  相似文献   

8.
A biofilm reactor, termed the permeable-support biofilm (PSB), was developed in which oxygen was supplied to the interior of the biofilm through a permeable membrane. The reactor was tested on filtered sewage supplemented with nutrient broth; the bulk solution was anoxic and the interior of the biofilm was supplied with pure oxygen. All tests were performed on a non-steady state biofilm with a depth of 1 mm. Mass balances on total organic carbon, ammonia, organic nitrogen and nitrate showed that combined heterotrophic oxidation of organics, denitrification and nitrification occurred simultaneously within the biofilm. The advantages of such a reactor are discussed.  相似文献   

9.
Biological wastewater treatment by aerobic granular sludge biofilms offers the possibility to combine carbon (COD), nitrogen (N) and phosphorus (P) removal in a single reactor. Since denitrification can be affected by suboptimal dissolved oxygen concentrations (DO) and limited availability of COD, different aeration strategies and COD loads were tested to improve N- and P-removal in granular sludge systems. Aeration strategies promoting alternating nitrification and denitrification (AND) were studied to improve reactor efficiencies in comparison with more classical simultaneous nitrification–denitrification (SND) strategies. With nutrient loading rates of 1.6 gCOD L−1 d−1, 0.2 gN L−1 d−1, and 0.08 gP L−1 d−1, and SND aeration strategies, N-removal was limited to 62.3 ± 3.4%. Higher COD loads markedly improved N-removal showing that denitrification was limited by COD. AND strategies were more efficient than SND strategies. Alternating high and low DO phases during the aeration phase increased N-removal to 71.2 ± 5.6% with a COD loading rate of 1.6 gCOD L−1 d−1. Periods of low DO were presumably favorable to denitrifying P-removal saving COD necessary for heterotrophic N-removal. Intermittent aeration with anoxic periods without mixing between the aeration pulses was even more favorable to N-removal, resulting in 78.3 ± 2.9% N-removal with the lowest COD loading rate tested. P-removal was under all tested conditions between 88 and 98%, and was negatively correlated with the concentration of nitrite and nitrate in the effluent (r = −0.74, p < 0.01). With low COD loading rates, important emissions of undesired N2O gas were observed and a total of 7–9% of N left the reactor as N2O. However, N2O emissions significantly decreased with higher COD loads under AND conditions.  相似文献   

10.
A novel biofilm reactor-alternating pumped sequencing batch biofilm reactor (APSBBR)-was developed to treat synthetic dairy wastewater at a volumetric chemical oxygen demand (COD) loading rate of 487 g COD m(-3) d(-1) and an areal loading rate of 5.4 g COD m(-2) d(-1). This biofilm reactor comprised two tanks, Tanks 1 and 2, with two identical plastic biofilm modules in each tank. The maximum volume of bulk fluid in the two-tank reactor was the volume of one tank. The APSBBR was operated as a sequencing batch biofilm reactor with five operational phases-fill (25 min), anoxic (9 h), aerobic (9 h), settle (6 h) and draw (5 min). The fill, anoxic, settle and draw phases occurred in Tank 1. In the aerobic phase, the wastewater was circulated between the two tanks with centrifugal pumps and aeration was mainly achieved through oxygen absorption by micro-organisms in the biofilms when they were exposed to the air. In this paper, the biofilm growth and characteristics in the APSBBR were studied in a 98-day laboratory-scale experiment. During the course of the study, it was found that the biofilm thickness (delta) in Tank 1 ranged from 1.2 to 7.2 mm and that in Tank 2 from 0.5 to 2.2 mm; the biofilm growth against time (t) can be simulated as delta=0.07t0.99 (R2 = 0.97, P = 0.002) in Tank 1 and delta = 0.08t0.66 (R2 = 0.81, P = 0.04) in Tank 2. The biomass yield coefficient, Y, was 0.18 g volatile solids (VS) g(-1) COD removal. The biofilm density in both tanks, X, decreased as the biofilm thickness increased and can be correlated to the biofilm thickness, delta .  相似文献   

11.
Hydrogen-driven denitrification using a hollow-fiber membrane biofilm reactor (MBfR) was evaluated for operation in tertiary wastewater treatment. Specific objectives were to evaluate the impact of different levels of shearing stress caused by mixing and nitrogen sparging on the biofilm structure and denitrification rates. Applying high shear force proved to be effective in improving denitrification rates by reducing the thickness of the biofilm. With intensive mixing a biofilm thickness of approximately 800 microm was maintained, while additional nitrogen sparging could further reduce the biofilm thickness to approximately 300 microm. The highest denitrification rates of 0.93 gN/m(2)d were obtained when biofilm thickness was lower than 500 microm. Lower extracellular polymeric substances (EPS) accumulation and carbohydrates to protein ratio observed in thinner biofilms allowed for higher nitrate removal in the system. No significant sloughing of biomass or change in total and soluble COD in the final effluent was observed under steady-state conditions.  相似文献   

12.
Im JH  Woo HJ  Choi MW  Han KB  Kim CW 《Water research》2001,35(10):2403-2410
An anaerobic-aerobic system including simultaneous methanogenesis and denitrification was introduced to treat organic and nitrogen compounds in immature leachate from a landfill site. Denitrification and methanogenesis were successfully carried out in the anaerobic reactor while the organic removal and nitrification of NH4+,-N were carried out in the aerobic reactor when rich organic substrate was supplied with appropriate hydraulic retention time. The maximum organic removal rate was 15.2 kg COD/m3 d in the anaerobic reactor while the maximum NH4+-N removal rate and maximum nitrification rate were 0.84kg NH4+-N/m3/d and 0.50kg NO3--N/m3/d, respectively, in the aerobic reactor. The pH range for proper nitrification was 6-8.8 in the aerobic reactor. The organic compounds inhibited nitrification so that the organic removal in the anaerobic reactor could enhance the nitrification rate in the following aerobic reactor. The gas production rate was 0.33 m3/kg COD and the biogas compositions of CH4, CO2, and N2 were kept relatively constant, 66-75, 22-32, and 2-3%, respectively.  相似文献   

13.
Nitrogen control in AO process with recirculation of solubilized excess sludge   总被引:10,自引:0,他引:10  
Cui R  Jahng D 《Water research》2004,38(5):1159-1172
In order to establish a sludgeless process with a nitrogen-controlled effluent, batch and continuous experiments in a lab scale anoxic-oxic (AO) process were carried out to investigate the possibility of ozonized sludge (OS) usage as a denitrification energy source. Through ozonation at an ozone dose of 1.2g O(3)/g MLVSS, 63.2% of treated MLVSS was solubilized, 12.7% of COD was lost (probably due to complete oxidation to CO(2)), and soluble COD/TN ratio of OS appeared to be only about 10.78 because ozonation released cellular proteins and other nitrogenous substances. In oxic conditions, incubation of OS supernatant with activated sludge generated nitrate without significant ammonia accumulation, which meant that rapid nitrification occurred following ammonia generation from heterotrophic degradation of nitrogen-bearing cellular substances. In anoxic conditions, externally supplied nitrate was removed at the expense of organic carbons in the OS supernatant. However, ammonia was accumulated as anoxic incubation proceeded probably because of heterotrophic degradation of nitrogenous materials as in oxic conditions. Thus it was appeared that solubilized excess sludge acted as a reducing power for denitrification but also as a nitrogen source. In addition, 24-41% of COD contained in OS supernatant were found to be consumed for denitrification. But the remaining COD was not assimilated further even in the presence of nitrate. It was concluded by a nitrogen balance analysis that the energy source contained in OS was not sufficient to completely reduce the nitrogen that was originated from OS itself to nitrogen gas.  相似文献   

14.
Eiroa M  Vilar A  Amor L  Kennes C  Veiga MC 《Water research》2005,39(2-3):449-455
Formaldehyde and phenol biodegradation during the denitrification process was studied at lab-scale, first in anoxic batch assays and then in a continuous anoxic reactor. The biodegradation of formaldehyde (260 mgl(-1)) as single carbon source and at phenol concentrations ranging from 30 to 580 mgl(-1) was investigated in batch assays, obtaining an initial biodegradation rate around 0.5g CH(2)OgVSS(-1)d(-1). With regard to phenol, its complete biodegradation was only observed at initial concentrations of 30 and 180 mgl(-1). The denitrification process was inhibited at phenol concentrations higher than 360 mgl(-1). Studies were also done using a continuous anoxic upflow sludge blanket reactor in which formaldehyde removal efficiencies above 99.5% were obtained at all the applied formaldehyde loading rates, between 0.89 and 0.14g COD (CH(2)O)l(-1)d(-1). The phenol loading rate was increased from 0.03 to 1.3g COD (C(6)H(6)O)l(-1)d(-1). Phenol removal efficiencies above 90.6% were obtained at phenol concentrations in the influent between 27 and 755 mgl(-1). However, when the phenol concentration was increased to 1010 mgl(-1), its removal efficiency decreased. Denitrification percentages around 98.4% were obtained with phenol concentrations in the influent up to 755 mgl(-1). After increasing phenol concentration to 1010 mgl(-1), the denitrification percentage decreased because of the inhibition caused by phenol.  相似文献   

15.
Misiak K  Casey E  Murphy CD 《Water research》2011,45(11):3512-3520
Membrane aerated biofilm reactors (MABRs) have potential in wastewater treatment as they permit simultaneous COD minimisation, nitrification and denitrification. Here we report on the application of the MABR to the removal of fluorinated xenobiotics from wastewater, employing a Pseudomonas knackmussii monoculture to degrade the model compound 4-fluorobenzoate. Growth of biofilm in the MABR using the fluorinated compound as the sole carbon source occurred in two distinct phases, with early rapid growth (up to 0.007 h−1) followed by ten-fold slower growth after 200 h operation. Furthermore, the specific 4-fluorobenzoate degradation rate decreased from 1.2 g g−1 h−1 to 0.2 g g−1 h−1, indicating a diminishing effectiveness of the biofilm as thickness increased. In planktonic cultures stoichiometric conversion of substrate to the fluoride ion was observed, however in the MABR, approximately 85% of the fluorine added was recovered as fluoride, suggesting accumulation of ‘fluorine’ in the biofilm might account for the decreasing efficiency. This was investigated by culturing the bacterium in a tubular biofilm reactor (TBR), revealing that there was significant fluoride accumulation within the biofilm (0.25 M), which might be responsible for inhibition of 4-fluorobenzoate degradation. This contention was supported by the observation of the inhibition of biofilm accumulation on glass cover slips in the presence of 40 mM fluoride. These experiments highlight the importance of fluoride ion accumulation on biofilm performance when applied to organofluorine remediation.  相似文献   

16.
Effects of substrate loading rate on biofilm structure   总被引:7,自引:0,他引:7  
Wijeyekoon S  Mino T  Satoh H  Matsuo T 《Water research》2004,38(10):2479-2488
The effects of substrate surface loading rate on biofilm growth and structure were investigated by chemical, biochemical and microscopic methods. Three tubular reactors were operated at equal C:N ratio of 0.1, with substrate loading rates of 1.2, 0.6 and 0.3g-C/m(2)/day. Substrate loading positively influenced the biofilm growth rate. Denser biofilms with lower porosities were formed at higher substrate loading. Slowly growing biofilms having porous structures were found to have higher specific activities. Nitrification was suppressed under the higher substrate loading conditions even at the equal C:N ratio of 0.1, thus proving that the spatial competition between nitrifiers and heterotrophs as one limiting criteria for stable nitrification. The spatial organization of the ammonia oxidizers was biofilm structure related. The strain variability of ammonia oxidizers was substrate loading dependent. These findings suggest that substrate loading is a key parameter in determining biofilm structure and function.  相似文献   

17.
Joo HS  Hirai M  Shoda M 《Water research》2006,40(16):3029-3036
Alcaligenes faecalis strain No. 4, which has heterotrophic nitrification and aerobic denitrification abilities, was used to treat actual piggery wastewater containing high-strength ammonium under aerobic conditions. In a continuous experiment using a solids-free wastewater (SFW) mixed with feces, almost all of the 2000 NH4+ -N mg/L and 12,000 COD mg/L in the wastewater was removed and the ammonium removal rate was approximately 30 mg-N/L/h, which was 5-10 times higher than the rates achieved by other bacteria with the same abilities. The denitrification ratio was more than 65% of removed NH4+ -N, indicating that strain No. 4 exhibited its heterotrophic nitrification and aerobic denitrification abilities in the piggery wastewater.  相似文献   

18.
浙江某工业废水处理厂升级改造,采用AAO—MBBR复合生物膜工艺,在未新增建设用地和扩建池容的基础上,日处理量由3×104m3/d提高至6×104m3/d。改造后实际运行出水COD、TP、NH3-N和TN浓度分别为(37.7±6.61)、(0.09±0.03)、(0.25±0.14)和(5.87±1.54)mg/L,出水水质稳定达到一级A标准。实际监测表明,在好氧MBBR区存在TN去除现象,约占TN总去除量的10.36%。系统内的优势硝化菌属为硝化螺旋菌属Nitrospira,其在悬浮载体生物膜和活性污泥中的相对丰度分别为8.98%和0.92%,悬浮载体的投加使硝化细菌得到有效富集;反硝化菌在生物膜中的占比为7.94%,为悬浮载体同步硝化反硝化(SND)效果的发生提供了微观保证,提高了TN去除率。  相似文献   

19.
Ozonation reduces sludge production and improves denitrification   总被引:2,自引:0,他引:2  
The effectiveness of partial ozonation of return activated sludge for enhancing denitrification and waste sludge minimization were examined. A pair of nitrifying sequencing batch reactors was operated in either aerobic or alternating anoxic/aerobic conditions, with one control and one ozonated reactor in each set. The amount of solids produced decreased with the ozone dose. Biomass in the anoxic/aerobic reactor was easier to destroy (up to 25% of the initial excess sludge) than in the aerobic (10%) one, generating approximately twice as much soluble COD by cell lysis. Denitrification rate improved up to 60% due to additional carbon released by ozonation. Nitrification rates deteriorated much more in the aerobic than in the alternating reactor, possibly as a result of direct destruction of nitrifying autotrophs as well as competition created by growth of heterotrophs receiving the additional COD. Overall, ozonation provided the expected benefits in denitrification and had less impact on nitrification in the alternating reactors.  相似文献   

20.
Teissier S  Torre M 《Water research》2002,36(15):3803-3811
Acetylene (C2H2) inhibits key enzymes involved in nitrification (Ammonium monooxygenase) and denitrification (N2O reductases). Thus an injection of C2H2 at mid time of a batch type incubation make it possible to assess denitrification by measurement of the N2O accumulation as well as nitrification, calculated from the variations of the ammonium flux. As estimated by the "acetylene block technique", denitrification is known to be only a measure of the denitrification rate supported by nitrate diffusing from the water column (Dw). This paper presents a first application on river epilithic biofilms which proved that the simultaneous measurement of Dw and nitrification allows the estimation of the order of magnitude of total denitrification (Dt) when nitrification is detected in the tested sample. This approach appears to be an easy tool for determination of nitrification and denitrification in natural samples and as thus presents an alternative to isotopic 15N methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号