首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The information obtained from the characterization of vanadium oxide single crystal surfaces is related to the study of vanadia nanoparticles supported on silica and alumina thin films, model systems for the so-called “supported monolayer vanadia catalysts”. It is found that these particles have properties similar to V2O3 surfaces, where the topmost V ions are involved in vanadyl groups and have a 5+ oxidation state. A vibrational spectroscopy investigation combined with DFT calculations show that the accepted interpretation of vibrational spectra from vanadia catalysts must be revised.  相似文献   

2.
Vanadium oxides (VOx) have been studied extensively for applications in thermochromic materials, electrochomics, and infrared detectors due to their unique phase transition characteristics. However, various vanadium oxide phases usually occur under different deposition conditions due to their particularly complex vanadium-oxygen system. In this research, V3O7, VO2(B), VO2(M), and V2O5 thin films were obtained as pure or mixed phases by controlling the substrate temperatures between 250 °C and 400 °C during magnetron sputtering. The microstructure and phase composition of vanadium oxide thin films were characterized and analyzed using X-ray diffraction and Raman spectroscopy. The phase evolution was dependent on the substrate temperature and could be clarified. Metastable V3O7 and VO2(B) phases were obtained at substrate temperatures of 250–300 °C, while stable VO2 and V2O5 phases were obtained at 350–400 °C. The surface morphology and optical properties of vanadium oxide thin films with different substrate temperatures were investigated in detail. Our results provide methods for transforming vanadium oxide phases under well controlled substrate temperatures.  相似文献   

3.
Well ordered V2O3(0001) layers may be grown on Au(111) surfaces. These films are terminated by a layer of vanadyl groups which may be removed by irradiation with electrons, leading to a surface terminated by vanadium atoms. We present a study of methanol adsorption on vanadyl terminated and vanadium terminated surfaces as well as on weakly reduced surfaces with a limited density of vanadyl oxygen vacancies produced by electron irradiation. Different experimental methods and density functional theory are employed. For vanadyl terminated V2O3(0001) only molecular methanol adsorption was found to occur whereas methanol reacts to form formaldehyde, methane, and water on vanadium terminated and on weakly reduced V2O3(0001). In both cases a methoxy intermediate was detected on the surface. For weakly reduced surfaces it could be shown that the density of methoxy groups formed after methanol adsorption at low temperature is twice as high as the density of electron induced vanadyl oxygen vacancies on the surface which we attribute to the formation of additional vacancies via the reaction of hydroxy groups to form water which desorbs below room temperature. Density functional theory confirms this picture and identifies a methanol mediated hydrogen transfer path as being responsible for the formation of surface hydroxy groups and water. At higher temperature the methoxy groups react to form methane, formaldehyde, and some more water. The methane formation reaction consumes hydrogen atoms split off from methoxy groups in the course of the formaldehyde production process as well as hydrogen atoms still being on the surface after being produced at low temperature in the course of the methanol ?? methoxy + H reaction.  相似文献   

4.
The behaviour of the kinetically involved intermediate states arising in the electrocatalysis of anodic oxygen evolution at chemically formed, high-area nickel oxide (NiO·OH) films on nickel metal as substrate is examined by means of analysis of potential (V) decay transients, following interruption of anodic polarization currents at various overpotentials. The potential decay behaviour is treated in terms of the dependence ofV(t) on log (time,t), and of ln (–dV/dt) as f[V(t)]. The pseudocapacitance associated with the potential-dependence of the coverage or surface density of the overpotential-deposited species involved as intermediates in the reaction at the oxide electrode surface is evaluated jointly from the potential decay and Tafel polarization behaviour, following procedures developed recently.In anodic O2 evolution on oxide surfaces, such as NiO·OH, the intermediate states in the kinetics of the reaction are to be identified as OH or O species coupled with potential-dependent Ni(III) and Ni(IV) oxidation states of nickel, and the surface density of these states can be evaluated experimentally.The results obtained for anodic O2 evolution on the chemically formed nickel oxide films are compared with the behaviour at anodically formed thin oxide films on nickel metal.  相似文献   

5.
In order to produce thin films of crystalline V2O5, vanadium metal was thermally oxidised at 500 °C under oxygen pressures between 250 and 1000 mbar for 1-5 min. The oxide films were characterised by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The lithium intercalation performance of the oxide films was investigated by cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectroscopy (EIS). It was shown that the composition, the crystallinity and the related lithium intercalation properties of the thin oxide films were critically dependent on the oxidation conditions. The formation of crystalline V2O5 films was stimulated by higher oxygen pressure and longer oxidation time. Exposure for 5 min at 750 mbar O2 at 500 °C resulted in a surface oxide film composed of V2O5, and consisting of crystallites up to 200 nm in lateral size. The thickness of the layer was about 100 nm. This V2O5 oxide film was found to have good cycling performance in a potential window between 3.8 and 2.8 V, with a stable capacity of 117 ± 10 mAh/g at an applied current density of 3.4 μA/cm2. The diffusion coefficients corresponding to the two plateaus at 3.4 and 3.2 V were determined from the impedance measurements to (5.2 and 3.0) × 10−13 cm2 s−1, respectively. Beneath the V2O5 layer, lower oxides (mainly VO2) were found close to the metal. At lower oxygen pressure and shorter exposure times, the oxide films were less crystalline and the amount of V4+ increased in the surface oxide film, as revealed by XPS. At intermediate oxygen pressures and exposure times a mixture of crystalline V2O5 and V6O13 was found in the oxide film.  相似文献   

6.
The adsorption of carbon monoxide (CO), propane (C3H8) and propene (C3H6) on V2O3(0001) films grown on Au(111) was studied by Temperature Programmed Desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS). The “oxidized” surface (i.e., as prepared exhibiting V=O termination), the “reduced” surface (i.e., V=O groups being removed by electron irradiation), as well as the oxygen pre-covered reduced surface were investigated. Both TPD and XPS indicate that the oxidized surface has little affinity for CO adsorption, while the reduced surface readily binds CO (CO amount approx. 10 times higher). Accordingly, CO can be used to titrate the presence or absence of vanadyl oxygen (via adsorption on the vanadium atoms) but also of defects like surface oxygen vacancies. For propane and propene, desorption of the parent molecules was the major process, i.e., surface reactions were absent under the applied conditions. When oxygen was pre-adsorbed on the reduced surface, the adsorption properties resembled that of the oxidized surface, i.e., the vanadyl groups were (partially) re-established. TPD and XPS provide a handle to differentiate the binding sites on the V2O3 surface. Dedicated to Prof. Konrad Hayek.  相似文献   

7.
Kuhrs  C.  Arita  Y.  Weiss  W.  Ranke  W.  Schlögl  R. 《Topics in Catalysis》2000,14(1-4):111-123
In order to study the dehydrogenation of ethylbenzene to styrene, epitaxial iron oxide model catalyst films with Fe3O4(111), -Fe2O3(0001) and KFe x O y (111) stoichiometry were prepared in single crystal quality on Pt(111). They were investigated using surface science techniques before and after atmospheric pressure reaction experiments in a newly designed single crystal flow reactor. As expected from low-pressure measurements, Fe3O4(111) is catalytically inactive. The catalytic activity of -Fe2O3(0001) starts after an activation period of about 45 min. After that, the surface is essentially clean but shows a high concentration of defects. On the potassium-promoted films, however, the activation period is much longer, the activity then is higher and the surface gets covered completely with carbon and oxygen during reaction. This indicates a different reaction pathway on the promoted films with a carbon–oxygen species as catalytically active species.  相似文献   

8.
Vanadium oxides based materials are well known to play an active role as catalysts in many chemical processes of technological importance like for example hydrocarbon oxidation reactions or selective catalytic reduction of NO x in the presence of ammonia. Usually the (010) surface is pointed out as the most important, however one has to underline that other low-indices surfaces are by far less studied. In the present study the electronic structure of V2O5(001) and (100) surfaces are determined by ab initio DFT methods using gradient-corrected RPBE exchange-correlation functional. As models of surface sections different embedded V14O45H20, V14O44H18, and V21O65H25 clusters are considered for the (001) surface and V12O40H20, V14O46H22, V16O52H24 for the (100) surface. Detailed analyses of the electronic structure of each cluster are performed using charge density distributions, Mayer bond orders, electrostatic potential maps, character of frontier orbitals, and density of states (total as well as partial, atom projected). Results of the calculations show that overall negative charge of the surface oxygen sites scales with their coordination independent of the surface orientation. Terminal oxygen O(1) is charged the least negatively while doubly coordinated atoms –O(2) and Oe(2) have charge twice as large. This indicates that bridging (for (001) and (100) netplanes) and edging (only for (001) netplane) oxygen sites are more nucleophilic than terminal vanadyl sites, which becomes important in view of the reactivity of the different sites for surface chemical reactions. Vanadium atoms present at these surfaces are positively charged (electrophilic) and may play a role of electron acceptors. The unsaturated surfaces show a strong tendency to surface relaxation that manifest by large relaxation energies.  相似文献   

9.
The dehydrogenation of ethylbenzene to styrene was studied over single-crystalline iron oxide model catalyst films grown epitaxially onto Pt(111) substrates. The role of the iron oxide stoichiometry and of atomic surface defects for the catalytic activity was investigated by preparing single-phased Fe3O4(111) and α-Fe2O3(0001) films with defined surface structures and varying concentrations of atomic surface defects. The structure and composition of the iron oxide films were controlled by low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES), the surface defect concentrations were determined from the diffuse background intensities in the LEED patterns. These ultrahigh vacuum experiments were combined with batch reactor experiments performed in water–ethylbenzene mixtures with a total gas pressure of 0.6 mbar. No styrene formation is observed on the Fe3O4 films. The α-Fe2O3 films are catalytically active, and the styrene formation rate increases with increasing surface defect concentration on these films. This reveals atomic surface defects as active sites for the ethylbenzene dehydrogenation over unpromoted α-Fe2O3. After 30 min reaction time, the films were deactivated by hydrocarbon surface deposits. The deactivation process was monitored by imaging the surface deposits with a photoelectron emission microscope (PEEM). It starts at extended defects and exhibits a pattern formation after further growth. This indicates that the deactivation is a site-selective process. Post-reaction LEED and AES analysis reveals partly reduced Fe2O3 films, which shows that a reduction process takes place during the reaction which also deactivates the Fe2O3 films.  相似文献   

10.
《Journal of Catalysis》1999,181(1):6-15
Thin films of CeO2with and without a thin layer of copper oxide were prepared by rf magnetron sputtering on surfaces of α-Al2O3(sapphire) substrates. Careful characterisation of the surfaces was performed down to the atomic level using high-resolution electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Surprisingly, the as-deposited, corrugated ceria surfaces, nominally (001), consist exclusively of {111}-type lattice planes, but, upon annealing at 800°C, a well-defined portion of (001) surfaces are formed. Oxidation of carbon monoxide to carbon dioxide was studied, having the prepared films in a stirred batch reactor. A batch reactor was chosen so that the conversion over the small sample surface area (ca 10−4m2) could be monitored as a function of the reaction time. The activity of copper oxide on annealed ceria surfaces is markedly higher than on nonannealed surfaces, indicating a favourable synergetic effect between the ceria (001) surface and the copper oxide phase.  相似文献   

11.
An integrated surface science approach towards metal oxide catalysis   总被引:1,自引:0,他引:1  
The function of a metal oxide catalyst was investigated by an integrated approach, combining a variety of surface science techniques in ultrahigh vacuum with batch reactor conversion measurements at high gas pressures. Epitaxial FeO(111), Fe3O4(111) and α‐Fe2O3(0001) films with defined atomic surface structures were used as model catalysts for the dehydrogenation of ethylbenzene to styrene, a practized selective oxidation reaction performed over iron‐oxide‐based catalysts in the presence of steam. Ethylbenzene and styrene adsorb onto regular terrace sites with their phenyl rings oriented parallel to the surface, where the π‐electron systems interact with Lewis acidic iron sites exposed on Fe3O4(111) and α‐Fe2O3(0001). The reactant adsorption energies observed on these films correlate with their catalytic activities at high pressures, which indicates that the surface chemical properties do not change significantly across the pressure gap. Atomic defects were identified as catalytically active sites. Based on the surface spectroscopy results a new mechanism was proposed for the ethylbenzene dehydrogenation, where the upward tilted ethyl group of flat adsorbed ethylbenzene is dehydrogenated at Brønsted basic oxygen sites located at defects and the coupling of the phenyl ring to Fe3+ terrace sites determines the reactant adsorption–desorption kinetics. The findings are compared to kinetic measurements over polycrystalline catalyst samples, and an extrapolation of the reaction mechanism found on the model systems to technical catalysts operating under real conditions is discussed. The work demonstrates the applicability of the surface science approach also to complex oxide catalysts with implications for real catalysts, provided suitable model systems are available.  相似文献   

12.
The V/MgO catalysts with different V2O5 loadings were prepared by impregnating MgO with aqueous vanadyl sulfate solution. All of the catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). It was observed that the H2S removal capacity with respect to vanadia content increased up to 6 wt%, and then decreased with further increase in vanadia loading. The prepared catalysts had BET surface areas of 11.3 ~ 95.9 m2/g and surface coverages of V2O5 of 0.1 ~ 2.97. The surface coverage calculation of V2O5 suggested that a vanadia addition up to a monomolecular layer on MgO support increased the H2S removal capacity of V/MgO, but the further increase of VO x surface coverage rather decreased that. Raman spectroscopy showed that the small domains of Mg3(VO4)2 could be present on V/MgO with less than 6 wt% vanadia loading. The crystallites of bulk Mg3(VO4)2 and Mg2(V2O7) became evident on V/MgO catalysts with vanadia loading above 15 wt%, which were confirmed by a XRD. The TPR experiments showed that V/MgO catalysts with the loading below 6 wt% V2O5 were more reducible than those above 15 wt% V2O5. It indicated that tetrahedrally coordinated V5+ in well-dispersed Mg3(VO4)2 domains could be the active species in the H2S wet oxidation. The XPS studies indicated that the H2S oxidation with V/MgO could proceed from the redox mechanism (V5+ V4+) and that V3+ formation, deep reduction, was responsible for the deactivation of V/MgO.  相似文献   

13.
Using a surfactant-mediated method (surfactant based on cetyltrimethyl ammonium bromide, CTAB) V2O5 nanorod and nanoparticles have been successfully prepared. Morphologies of V2O5 nanostructures can be controlled by applying different precursors and by varying reaction conditions within the CTAB soft template. With ammonium metavanadate and sulfuric acid as precursors, nanoparticles are synthesized in the size range of 45–160 nm. Precursors of vanadyl sulfate hydrate and sodium hydroxide yield vanadium pentoxide nanorods with diameters of 30–90 nm and lengths of 260–600 nm. The resulting products are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), variable pressure scanning electron microscopy (VPSEM) and X-ray photoelectron spectroscopy (XPS). Temperature programmed reduction (TPR) is included to test catalytic performance. The results show that V2O5 nanoparticles and nanorods achieve better catalytic performance compared to bulk V2O5, i.e. lower onset temperature, workability at lower temperatures, and higher H2 consumption (μmol/g).  相似文献   

14.
High-k oxide dielectric films have attracted intense interest for thin-film transistors (TFTs). However, high-quality oxide dielectrics were traditionally prepared by vacuum routes. Here, amorphous high-k alumina (Al2O3) thin films were prepared by the simple sol-gel spin-coating and post-annealing process. The microstructure and dielectric properties of Al2O3 dielectric films were systematically investigated. All the Al2O3 thin films annealed at 300–600?°C are in amorphous state with ultrasmooth surface (RMS ~ 0.2?nm) and high transparency (above 95%) in the visible range. The leakage current of Al2O3 films gradually decreases with the increase of annealing temperature. Al2O3 thin films annealed at 600?°C showed the low leakage current density down to 3.9?×?10?7 A/cm2 at 3?MV/cm. With the increase of annealing temperature, the capacitance first decreases then increases to 101.1?nF/cm2 (at 600?°C). The obtained k values of Al2O3 films are up to 8.2. The achieved dielectric properties of Al2O3 thin films are highly comparable with that by vapor and solution methods. Moreover, the fully solution-processed InZnO TFTs with Al2O3 dielectric layer exhibit high mobility of 7.23?cm2 V?1 s?1 at the low operating voltage of 3?V, which is much superior to that on SiO2 dielectrics with mobility of 1.22?cm2/V?1 s?1 at the operating voltage of 40?V. These results demonstrate that solution-processed Al2O3 thin films are promising for low-power and high-performance oxide devices.  相似文献   

15.
《Ceramics International》2023,49(15):25543-25548
Transparent conducting thin films have been widely used in lots of fields. The absence of high-performance hole-type transparent conducting thin films, however, seriously limits the wider applications. LaRhO3 as a type of perovskite material shows hole-type conduction with semiconductor-like properties and no investigations have been carried out about transparent conducting properties on LaRhO3 thin films. Here, LaRh1-xNixO3 (x = 0, 0.05, 0.1) thin films were firstly deposited by chemical solution deposition, showing epitaxial growth on single crystal SrTiO3 (001) substrates with the epitaxial relationship of LaRhO3(001)[110]||SrTiO3(001)[110]. With the doping of Ni element, the surface morphology became denser. Hall measurements confirmed that the hole concentration was enhanced with Ni doping, resulting in the decreased resistivity. Low resistivity of 17.3 mΩ cm at 300K was obtained for the LaRh0.9Ni0.1O3 thin films. The electrical transport mechanisms were investigated, showing thermal activation at high temperatures and variable range hopping model for the doped thin films at low temperatures. The transmittance within the visible range for all thin films was higher than 50%. The results will provide a feasible route to deposit hole-type transparent conducting LaRhO3-based thin films.  相似文献   

16.
Simulation techniques have been employed to investigate the differences in the low energy adsorption configurations of ethene and ethane on the TiO2 supported and unsupported V2O5(001) surface. We find that the ethene molecule approaches much closer to thesupported V2O5(001) surface which is reflected in the 40 kj mol–1 higher adsorption energy. The low energy adsorption configuration located for ethane on the supported V2O5 shows that the molecule does not approach as close to the supported V2O5 surface as does ethene, resulting in the adsorption energy of ethane being 52 kJ mol–1 lower than that of ethene on the supported V2O5 surface.  相似文献   

17.
《Ceramics International》2017,43(8):6130-6137
We report a facile and low-temperature aqueous route for the fabrication of various oxide thin films (Al2O3, In2O3 and InZnO). A detail study is carried out to reveal the formation and properties of these sol-gel-derived thin films. The results show that the water-based oxide thin films undergo the decomposition of nitrate group as well as conversion of metal hydroxides to form metal oxide framework. High quality oxide thin film could be achieved at low temperature by this aqueous route. Furthermore, these oxide thin films are integrated to form thin-film transistors (TFTs) and the electrical performance is systematically studied. In particular, we successfully demonstrate In2O3/Al2O3 TFTs with high mobility of 30.88 cm2 V−1 s−1 and low operation voltage of 4 V at a maximum processing temperature of 250 °C.  相似文献   

18.
《Ceramics International》2021,47(21):29748-29757
This study systematically investigated the structural, optical, and morphological evolution of Gallium oxide (Ga2O3) films deposited at different substrate temperatures on Al2O3(0001) using pulsed laser deposition (PLD). The thickness of the Ga2O3 films was standardized in order to eliminate its effect on the film properties. The effect of substrate temperature from room temperature to 600 °C on the film's transmittance, crystalline structure, chemical composition and surface morphology, was explored. The plasma species generated during the deposition of the PLD process were monitored and analyzed employing in situ optical emission spectroscopy. The deposition rate of the films decreased with increasing substrate temperature. X-ray photoelectron spectroscopy was used to detect both Ga3+ and Ga + oxidation states in all prepared films, which indicated substoichiometric Ga2O3 films deficient in oxygen. The percentage of non-lattice oxygen decreased with increasing substrate temperature. At optimal condition, mono-crystaline β-Ga2O3 was produced with a high visible and near-infrared transmittance, large grain size and smooth surface, which is suitable for the application in high-performance power electric devices and photoelectronic devices.  相似文献   

19.
Gallium oxide (Ga2O3) films had been fabricated on Al2O3(0001) substrate by employing pulsed laser deposition (PLD) and annealed at different temperatures under forming gas (FG) atmosphere (95% N2 + 5% H2). The influence of annealing temperature on the structural, optical, chemical composition, and surface morphological properties of the Ga2O3 thin films was investigated comprehensively. The annealing processes with hydrogen gas play a crucial role in the characteristics of Ga2O3 thin films. A crystallization mechanism of Ga2O3 films controlled by annealing temperature has been proposed firstly and analyzed systematically, which contains three kinds of competitive mechanism, namely the thermal enhanced crystallization, the enhanced H2 dissociative adsorption on Ga2O3 surfaces, and the high-temperature decomposition of Ga2O3. Both Ga+ and Ga3+ oxidation valence states were presented in all samples, which indicated lattice oxygen deficiency in Ga2O3 films. The variation of the non-lattice oxygen proportion of Ga2O3 films related to the crystallization mechanism firstly increased and then decreased with the increase of annealing temperature. The detailed crystallization mechanism of PLD-Ga2O3 films annealed in FG offers a guideline and references for the further fabrication of high-quality Ga2O3 films and their applications in high-performance devices.  相似文献   

20.
Vanadium pentoxide (V2O5) films were prepared by electrochemical and thermal decomposition of vanadyl sulphate on titanium dioxide covered titanium plates and glassy carbon discs. The prepared material by thermal decomposition showed high surface area and good physical stability; while the electrodeposited films, although being homogeneous, showed poor adhesion. The V2O5 electrodes were chemically and electrochemically stable in aqueous (1 M H2SO4 + 1 M NaOH, pH 3) and organic (0.1 M But4NPF6 + CH3CN) solutions. In both cases, a well defined electrochemical response was observed. At the experimental conditions, the prepared materials were not active for the electrooxidation of toluene. The theoretical modeling suggests that the lack of activity is due to the weak interaction between toluene and the V2O5 surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号