首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ti-6Al-2Sn-4Zr-2Mo titanium alloy is a candidate material for multiwall thermal protection system concepts for advanced space transportation system vehicles. The total oxidation kinetics for this alloy, exposed to laboratory air in the 593–760°C range, were monitored by thermogravimetric analysis. The oxide thickness was measured by microscopy and the substrate contamination was estimated from microhardness measurements. Tensile elongation was determined for selected foil specimens after exposure to simulated space shuttle reentry conditions. The variation of total weight gain with time was found to have two distinct parabolic stages separated by a transient region. This transient was due to a process which involved an increase in the parabolic growth rate constant for the oxide and a simultaneous increase in oxygen solubility at the oxide metal interface. The time dependent increase in oxygen solubility at the interface was from about 7 at. % in stage 1 to about 18 at. % in stage 2. The diffusion coefficient for oxygen in the alloy was determined as a function of temperature using the difference between the total weight gain in stage 1 and the corresponding weight gain due to oxide growth. A model for the total oxidation kinetics, accounting for the two individual components namely oxide growth and solid solution formation, is proposed. The activation energy for the diffusion of oxygen in the alpha-solid solution is shown to be roughly equal to the activation energy for the degradation of tensile elongation for the alloy in the foil gage condition.  相似文献   

2.
The effect of trace levels of Ni on the intermediate temperature creep behavior of the alloy Ti–6Al–2Sn–4Zr–2Mo (wt%) has been investigated. Creep experiments were performed in tension over the temperature range 510–565 °C at stress range 138–413 MPa. Two heats of commercial grade Ti–6Al–2Sn–4Zr–2Mo with Ni levels of 0.006 and 0.035 wt% were studied. The high Ni material uniformly exhibited higher primary creep strains and minimum strain rates than the lower Ni material. Stress exponents in the range 5–7 and 4–6 were obtained for the high Ni and low Ni material respectively. At 565 °C a transition to a low stress region with a stress exponent equal 1 is found for both materials. At all stress levels, the apparent activation energy was lower for the high Ni material. The apparent activation energy is in excellent agreement with those reported for lattice self-diffusion in -titanium in the presence of fast diffusing impurities. The results also suggest that creep in the higher stress regime is controlled by dislocation motion within the -phase. We suggest that trace levels of Ni in the -phase accelerate self-diffusion therefore increasing the rate of dislocation climb leading to the higher creep rates observed in the high Ni material. In Part II, direct evidence in support of dislocation-based creep being important in both low and high stress regimes is presented.  相似文献   

3.
The viability of using coated Ti-6Al-2Sn-4Zr-2Mo foils at 620°C in air was established through mechanical and thermogravimetric testing. Weight-grained and oxygen embrittlement were significantly reduced by the coatings. The residual tensile elongation of coated specimens was 2.5 times that of uncoated specimens. Comparison depth-profiling with X-ray diffraction verified the reduction of oxygen solid-solution in the -phase for a selection of coated specimens.  相似文献   

4.
The viability of using coated Ti-6Al-2Sn-4Zr-2Mo foils at 620°C in air was established through mechanical and thermogravimetric testing. Weight gained and oxygen embrittlement were significantly reduced by the coatings. The residual tensile elongation of coated specimens was 2.5 times that of uncoated specimens. Composition depth-profiling with X-ray diffraction verified the reduction of oxygen solid solution in the -phase for a selection of coated specimens.  相似文献   

5.
超高强韧钛合金是制造超规格航空结构件的骨干材料。通过热模拟压缩实验研究了Ti-4.5Al-6.5Mo-2Cr-2.6Nb-2Zr-1Sn钛合金高温变形行为,采用临界条件动力学模型建立高温下动态再结晶体积分数预测模型。本研究取得的阶段性成果将为超大尺寸、复杂形状的关键结构件的集成制造提供理论支撑。  相似文献   

6.
7.
利用Gleeble-3800热模拟试验机,在变形温度为820-1060℃及应变速率为0.001-1s-1参数范围内对Ti-6Al-3Nb-2Zr-1Mo钛合金进行等温恒应变速率压缩试验。建立了该合金的高温变形本构方程,得到两相区和单相区的表面激活能分别为764.714 和126.936 kJ/mol。基于DMM和Prasad失稳准则建立了应变为0.4和0.7时的热加工图。分析加工图发现: Ti-6Al-3Nb-2Zr-1Mo钛合金在840–1060 ℃,应变速率为0.001–0.1 s-1,之间主要发生DRV/DRX,此区间变形时耗散率峰值51%分别出现在940℃/0.001s-1和880℃/1s-1,其变形后微观组织演变机制与热加工图匹配较好,当变形发生在820℃,较高应变速率(≥1s-1)下该合金加工时易发生流变失稳现象。  相似文献   

8.
.~theSofar,finiteelementmethodhaswidelybeenusedinmetalfoeingprocesses,whichcanhelptoshortenthedevelopmentcycleandreducetheproductcosts.ConstitutiverelationshipisabridgebetweenthedefonnationbehaViorofmaterialsandallkindsOfthermomechanicalparameters,anditisalsoapresupPOsitiontothesimulationOfmetaldeformationprocessesbyusingfiniteelementmethod.Fwhermore,itisusuallynon--linearandcomplex,owingtoavallationinstructUredabingplasticdefonnation,Particularlyoccultinginsupendloys.FOrmanyyears,researche…  相似文献   

9.
采用Gleeble-3800型热模拟实验机对一种新型高温钛合金Ti-6Al-2Sn-4Zr合金的高温塑性变形进行了研究,并利用数码显微镜对金相组织进行了观察.通过研究得到变形条件(变形温度、变形速率)对其成形的力学性能和组织的影响规律.结果表明:在相变温度以下变形时,流变应力先快速升高然后逐渐平缓下降,而后趋于稳定状态...  相似文献   

10.
Thermal expansion and lattice parameters are investigated up to 1100 °C for Ti-6Al-4V components, fabricated by shaped metal deposition. This is a novel additive layer manufacturing technique where near net-shape components are built by tungsten inert gas welding.The as-fabricated SMD Ti-6Al-4V components exhibit a constant coefficient of thermal expansion of 1.17 × 10−5 K−1 during heating up to 1100 °C, not reflecting the α to β phase transformation. During cooling a stalling of the contraction is observed starting at the β transus temperature. These high temperature experiments denude the α phase of V and enrich the β phase.The development of the lattice parameters in dependence on temperature are observed with high temperature X-ray diffraction. The unit cell volumes derived from these parameters are at room temperature larger for the α than for the β phase. With increasing temperature the unit cell volume of the β phase increases stronger than the one of the α phase resulting in a similar unit cell volume at the β transus temperature.These observations are interpreted as an indication for as-fabricated the SMD components being in a non-equilibrium state and reaching equilibrium during the slow heating and cooling during of the two different high temperature experiments.  相似文献   

11.
考察了Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd合金焊接接头力学性能。结果表明,Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd钛合金的焊接热影响区存在硬化倾向,塑性不足。焊前预热150℃可使焊接热影响区塑性明显改善。通过改变焊缝合金系统和焊后热处理制度等工艺措施,可以调整焊缝的综合力学性能,使之达到技术指标要求。文中还探讨了Ti-5Al-4Sn-2Zr-1Mo-0.25Si-1Nd合金焊接脆性的机理,认为延晶界成串分布的富钕相和晶内的马氏体转变组织是根本原因。  相似文献   

12.
Y.S. Ding  C. Chen 《Corrosion Science》2009,51(6):1413-1419
The fatigue crack growth rates (FCGRs) of Ti-6Al-4V and Ti-4.5Al-3V-2Mo-2Fe alloys were determined in gaseous hydrogen, air, and a soft vacuum. In hydrogen and at a stress ratio of 0.1, the deflected crack path associated with the localized brittle fracture of the α-phase could account for the reduced FCGR of Ti-6Al-4V. At a higher stress ratio of 0.5, hydrogen embrittlement enhanced cracking and alleviated the effect of crack deflections in Ti-6Al-4V specimens, resulting in the FCGR in hydrogen similar to that in air. In contrast, the FCGR of Ti-4.5Al-3V-2Mo-2Fe was insensitive to both the environment and stress ratio.  相似文献   

13.
研究了退火温度对Ti-6Al-3Nb-2Zr-1Mo合金组织和力学性能的影响。结果表明:随着退火温度升高,初生α相含量降低,2°~15°小角度晶界逐渐减少;退火温度较高时,退火过程中发生了α相→β相→α相的相变,<0001>//横向织构消失。随着退火温度升高,Ti-6Al-3Nb-2Zr-1Mo合金屈服强度逐渐降低,抗拉强度、延伸率先升高后降低。退火温度升高后,片层组织比例升高,裂纹扩展功占冲击吸收功的比例增大,材料韧性提升。  相似文献   

14.
利用Gleeble-1500热模拟试验机对Ti-6Al-3Nb-2Zr-1Mo合金片层组织进行热压缩实验,实验温度为850~1050℃,应变速率为0. 01~1 s~(-1),变形量为60%。实验结果表明,热加工温度一定时,流变应力随变形量和应变速率的增加而急剧增加直至达到峰值,然后下降,最后趋于平缓,这是由加工硬化和动态再结晶所致。应变速率恒定时,随着变形温度的上升,流变应力随之降低。绘制应力-应变曲线,计算其热变形激活能Q为748. 845 k J·mol~(-1),构建本构方程,并在动态材料模型的基础上建立了热加工图。并通过加工图确定3个失稳区,变形温度为980~1030℃、应变速率为0. 3~1 s~(-1)时合金发生剪切,形成绝热剪切带。结合加工图,确定了适合的加工区域,即加工温度为970~1010℃,应变速率为0. 03~0. 07 s~(-1)。  相似文献   

15.
Our previous results have shown that comprehensive mechanical properties of titanium alloys can be effectively improved by addition of Fe[1]. We systematically investigate hot deformation behaviors of Ti-6Al-4V-0.35Fe in this study, which is significant to improve plastic deformation ability of titanium alloys. In experiment, we use a Gleeble 3800 thermo-mechanical simulator to obtain the relationship between thermomechanical parameters and flow stress in a range of temperatures (800-950 &amp;amp;#176;C) and strain rates (0.001-10 s-1). The single-peak profiles of the flow curves indicate that dynamic recrystallization (DRX) mechanism dominates the deformation. TEM analysis indicate that the grain size in DRX changes under different deformation temperatures, and finer grains are formed at relatively lower temperature due to the dynamic globularization. The dislocation walls are formed in subgrain boundaries due to dislocation slipping-climbing. The Avrami-type DRX model and the strain compensated multivariable regression model have been applied to fit the experimental stress-strain data during hot deformation. A comparative study between these two types of constitutive models is conducted to represent the flow behavior. It is found that both models have good accuracy in predicting the flow stress of Ti-6Al-4V-0.35Fe alloy. A processing map based on dynamic material model (DMM) at the strain of 0.8 (steady-state flow stage) has been established to identify the flow instability regions and stability regions. The strain rate range of stability region is 0.001-0.6s-1 which has been expanded compared to the range of 0.0003-0.1s-1 of Ti-6Al-4V. Optimal hot working parameters are confirmed to be 920-950 &amp;amp;#176;C and 0.001-0.005 s-1, and nearly complete DRX has taken place. Our results indicate that hot working property of Fe-microalloyed Ti-6Al-4V is better than that of Ti-6Al-4V alloy in 800-950 &amp;amp;#176;C temperature scale, and processing cost has been decreased.  相似文献   

16.
The corrosion behaviour of investment cast and friction stir (FS) processed Ti-6Al-4V alloy was studied in HCl solution. FS processing was performed with the peak temperatures both above and below the β transus. All of the samples exhibited active-passive transitions in deaerated 5% HCl at room temperature, but the β FS processed samples exhibited superior corrosion behaviour. The corrosion morphology after immersion in 20% HCl was rationalized on the basis of a difference in partitioning of the alloying elements, which controls the composition of the α and β phases.  相似文献   

17.
Research on elevated temperature deformation behavior of Ti-6Al-4V sheets   总被引:1,自引:0,他引:1  
Hot deformation behaviors were studied by means of scanning electron microscopy (SEM) and uniaxial thermal tension. The effect of de-formation temperature and strain rate on flow stress was evaluated, and deformation mechanism was analyzed. The results show that the stress-strain curves of Ti-6Al-4V (TC4) alloy sheet and TC4 alloy bar at elevated temperatures have different forms and rules. Flow stress of TCA is controlled by both strain rate and deformation temperature. The flow stress decreases with the increase of high temperature. Deforma-tion mechanisms exhibit dynamic recovery and recrystallization feature within high temperature region and grain boundary slip behaviors at low temperature.  相似文献   

18.
19.
针对Ti-5.8Al-4.8Sn-2Zr-1Mo-0.35Si-0.70Nd粉末冶金高温钛合金中富钕稀土相的形成、尺寸、分布、形态、长大及结构特征进行了系统研究。结果表明:快速凝固态高温钛合金粉末中稀土相为液态析出相,其尺寸大部分在50~250 nm之间,弥散分布在基体中;晶内稀土相多为球状,晶界稀土相多为椭球状,其长轴平行于晶界;TEM观察到的稀土相的尺寸和分布与理论计算相符合;快速凝固高温钛合金粉末经过700~1000℃/110 MPa/0.5 h热等静压成形后,快速凝固过程中已析出的稀土相尺寸变化不大;同时细小的稀土相从过饱和的基体中大量固相析出;经过1200℃/140 MPa/3 h热等静压成形后,稀土相颗粒尺寸大部分在150~500 nm之间,有明显长大;稀土相的高分辨图像及同心衍射环花样表明,快速凝固高温钛合金粉末中的稀土相由5~10 nm的纳米晶组成,经过1200℃热等静压成形处理后的稀土相仍由纳米晶组成,而且纳米晶的尺寸没有明显变化;但是稀土相的"基体"上明显出现富Sn元素的"第二相"颗粒,结构变得复杂。  相似文献   

20.
分析了Ti-6Al-4Mo钛合金在β相区加β相变点下双重退火及β相变点下单一再结晶退火状态后α相与β相中的微区成分。结果表明,两种退火处理后,Mo在β相中都强烈富集,在α相中贫化;而Al在β相中贫化,在α相中富集。随着退火温度的降低,α相中的Al、Mo元素含量基本不变,但Al在β相中的浓度呈降低的趋势,Mo在β相中浓度增加。单一再结晶退火后,α相与β相之间有明显的过渡界面。界面能谱结果显示,在由α相向β相过渡过程中,Al含量变化很小,而Mo含量变化很大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号