首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Intermetallics》2006,14(2):115-122
The creep behaviour of a cast TiAl-based alloy with nominal chemical composition Ti–46Al–2W–0.5Si (at.%) was investigated. Constant load tensile creep tests were performed in the temperature range 973–1073 K and at applied stresses ranging from 200 to 390 MPa. The minimum creep rate is found to depend strongly on the applied stress and temperature. The power law stress exponent n is determined to be 7.3 and true activation energy for creep Q is calculated to be 405 kJ/mol. The initial microstructure of the alloy is unstable during creep exposure. The transformation of the α2(Ti3Al)-phase to the γ(TiAl)-phase, needle-like B2 particles and fine Ti5Si3 precipitates and particle coarsening are observed. Ordinary dislocations in the γ-matrix dominate the deformation microstructures at creep strains lower than 1.5%. The dislocations are elongated in the screw orientation and form local cusps, which are frequently associated with the jogs on the screw segments of dislocations. Fine B2 and Ti5Si3 precipitates act as effective obstacles to dislocation motion. The kinetics of the creep deformation within the studied temperature range and applied stresses is proposed to be controlled by non-conservative motion of dislocations.  相似文献   

2.
《Intermetallics》2002,10(6):603-611
The creep response of a nearly-lamellar Ti–47Al–4(W, Nb, B) alloy is studied at 760 °C in a wide stress range 100–500 MPa. The alloy exhibits excellent creep resistance with a minimum creep rate of 1.2×10−10/s at 100 MPa and the time to 0.5% creep strain of 1132 h at 140 MPa. The controlling creep process is probed by analysis of the post-creep dislocation structure and by observation of incubation period during stress reduction test. The results indicate that creep is controlled by dislocation climb at low stresses (Class II type) and by jog-dragged dislocation glide at high stresses (Class I type). The transition from Class II to Class I type creep occurs at about 180 MPa. The excellent creep resistance of the studied alloy compared to other W containing TiAl alloys is attributed to its highly stable lamellar microstructure consisting eventually of coarse gamma laths.  相似文献   

3.
Creep properties of the experimental superalloy were investigated in the temperature range 1073–1223 K and stress range 110–550 MPa. The observations of dislocation structures during different creep conditions reveal that in the high stress region, particle-shearing mechanisms including stacking fault formation and antiphase boundary creation are operative and in the low stress region, the dislocation climb mechanism is dominant. From the plot of minimum creep rate versus applied stress, a very low stress region with exponent n < 2, which is related to diffusional creep, is found. Based on the experimental results, a stress–temperature creep deformation mechanism map for the alloy is constructed. On the basis of particle hardening theories and various dislocation-creep theories, the dislocation-creep transitions in terms of internal stress are discussed and calculated threshold stresses of various creep deformation mechanisms indicates that the particle shearing is easier to operate than Orowan looping at high stresses, and general climb is easy to happen at low stresses.  相似文献   

4.
The creep mechanism of as-cast Mg-6Al-6Nd alloy was studied. The stress exponent for creep is 5.8 under the applied stresses of 50–70 MPa at 175°C. The activation energy for creep is 189 kJ·mol−1 under the applied stress of 70 MPa in the range of 150–200°C. The true stress exponent and threshold stress for creep are calculated as 4.96 and 10.2 MPa, respectively. The true stress exponent indicates that its creep mechanism belongs to the dislocation climb-controlled creep, which is in agreement with the microstructure changes before and after creep. The high value for stress exponent is attributed to the interaction of Al11Nd3 phase with dislocations. The activation energy is more than the self-diffusion activation energy of Mg, which is attributed to the load transfer taking place from the matrix to Al11Nd3 phase during creep.  相似文献   

5.
利用金相显微镜、扫描电镜、透射电镜、XRD物相分析以及力学性能测试等手段,研究了Mg-2Zn-1.5Cu(at%)合金的显微组织及力学性能。结果表明:铸态合金存在较为明显的元素偏析,主要的第二相为MgCuZn相;合金的力学性能随着温度的提高而不断降低,塑性变化幅度要明显高于强度,合金的断裂方式也由低温时的沿晶断裂转变为高温时的穿晶断裂;在相同温度下,随着应力的提升,合金的稳态蠕变速率提高,蠕变机制由晶界控制转变为晶界及位错共同控制;在相同的应力下,随着温度的提升,合金的稳态蠕变速率存在数量级的提升,蠕变激活能由130kJ/mol降低到36.4 kJ/mol;在200℃,45 MPa时,出现加速蠕变阶段,发生蠕变断裂,断口存在明显的穿晶断裂特征,基体中有大量的沿基面运动的位错,部分位错发生攀移,MgZnCu相具有减缓蠕变变形的作用。  相似文献   

6.
Creep of single-crystal superalloys is governed by dislocation glide, climb, reactions and annihilation. Discrete three-dimensional (3D) dislocation dynamics (DDD) simulations are used to study the evolution of the dislocation substructure in a γ/γ′ microstructure of a single-crystal superalloy for different climb rates and loading conditions. A hybrid mobility law for glide and climb is used to map the interactions of dislocations with γ′ cubes. The focus is on the early stages of creep, where dislocation plasticity is confined to narrow γ channels. With enhancing climb mobility, the creep strain increases, even if the applied resolved shear stress is below the critical stress required for squeezing dislocations into the γ channels. The simulated creep microstructure consists of long dislocations and a network near the corners of the γ′ precipitate in the low-stress regime. In the high-stress regime, dislocations squeeze into the γ channels, where they deposit dislocation segments at the γ/γ′ interfaces. These observations are in good agreement with experimentally observed dislocation structures that form during high-temperature and low-stress creep.  相似文献   

7.
The influence of orientation on the stress rupture behaviors of a 3 rd-generation nickel-based single-crystal superalloy was investigated at 1100℃/150 MPa.It is found that the stress rupture anisotropy is shown at 1100℃,but not so obvious compared with that at intermediate temperatures.The [001] specimens display the longest rupture life,[111] specimens show the shortest rupture life,and [011] specimens exhibit the intermediate life.Detailed observations show that the final fracture is caused by crack initiation and propagation,and the anisotropy of three oriented specimens is related to the fracture modes,γ/γ' microstructures,interfacial dislocation networks and cutting mechanisms in y' phase.For [001] specimens,N-type rafted structures are formed which can well hinder the slip and climb of dislocations.Besides,the regular interfacial dislocation networks can prevent dislocations from cutting into y' phase,leading to the improvement of the creep resistance.For [011] specimens,±45°rafted structures and irregular networks result in less strain hardening.For [111] specimens,a large number of crack propagation paths and inhomogeneous deformations caused by irregular rafted structures deteriorate the property and result in the shortest life.Furthermore,a[100] superdislocations with low mobility are widely formed in[001] and [011] specimens which suggests the low creep strain rate during steady creep stage,whereas superdislocations in[111] specimens possess high mobility,which indicates the high strain rate and corresponding poor stress rupture property.  相似文献   

8.
The effect of trace levels of Ni on the intermediate temperature creep behavior of the alloy Ti–6Al–2Sn–4Zr–2Mo (wt%) has been investigated. Creep experiments were performed in tension over the temperature range 510–565 °C at stress range 138–413 MPa. Two heats of commercial grade Ti–6Al–2Sn–4Zr–2Mo with Ni levels of 0.006 and 0.035 wt% were studied. The high Ni material uniformly exhibited higher primary creep strains and minimum strain rates than the lower Ni material. Stress exponents in the range 5–7 and 4–6 were obtained for the high Ni and low Ni material respectively. At 565 °C a transition to a low stress region with a stress exponent equal 1 is found for both materials. At all stress levels, the apparent activation energy was lower for the high Ni material. The apparent activation energy is in excellent agreement with those reported for lattice self-diffusion in -titanium in the presence of fast diffusing impurities. The results also suggest that creep in the higher stress regime is controlled by dislocation motion within the -phase. We suggest that trace levels of Ni in the -phase accelerate self-diffusion therefore increasing the rate of dislocation climb leading to the higher creep rates observed in the high Ni material. In Part II, direct evidence in support of dislocation-based creep being important in both low and high stress regimes is presented.  相似文献   

9.
Mg-Sn based alloy is one of the potential alloys for application at elevated temperature.The compressive creep behavior of ageing-treated Mg-xSn(x=3%,5%) alloys was investigated at the temperatures of 423 and 473 K and the stresses from 25 MPa to 35 MPa.When the tin content varies,the ageing-treated Mg-xSn alloys show quite different creep resistance,which are mainly attributed to the size and distribution of Mg_2Sn phases in the ageing-treated Mg-xSn alloys.The calculated value of stress exponent, n=6.3...  相似文献   

10.
Creep behavior of Super304 H austenitic steel has been investigated at elevated temperatures of 923-973 K and at applied stress of 190-210 MPa.The results show that the apparent stress exponent and activation energy in the creep deformation range from 16.2 to 27.4 and from 602.1 to 769.3 kJ/mol at different temperatures,respectively.These high values imply the presence of a threshold stress due to an interaction between the dislocations and Cu-rich precipitates during creep deformation.The creep mechanism is associated with the dislocation climbing governed by the matrix lattice diffusion.The origin of the threshold stress is mainly attributed to the coherency strain induced in the matrix by Cu-rich precipitates.The theoretically estimated threshold stresses from Cu-rich precipitates agree reasonably with the experimental results.  相似文献   

11.
Large-scale atomistic simulations are performed in order to observe local behaviors of screw dislocations located on the shuffle set of (111) in single crystal silicon, focusing on the propagation process of the screw dislocations. A quadrupolar arrangement of screw dislocations is utilized to impose the periodic boundary conditions along each of the three spatial directions. With the aid of molecular dynamics simulations, the dislocation mobility is investigated in terms of the critical resolved shear stress. Based on the results from the simulations, we discuss effects of the model size and temperature on the critical resolved shear stress. After choosing the proper model size to reduce undesirable interference between the dislocations, we further estimate the Peierls stress by fitting from a set of the critical resolved shear stresses at various temperatures. Meanwhile, we observe a double kink mechanism in the dislocation propagation which is the most energetically favorable dislocation movement in silicon. We investigate the formation and migration of kink pairs on an undissociated screw dislocation in silicon.  相似文献   

12.
Dislocation pile-ups at grain boundaries determine the back-stress opposing plastic deformation while promoting yielding in neighbouring grains. A regular array of parallel pile-ups of edge dislocations was analysed numerically to determine the equilibrium positions of all dislocations and compared with the result of various simplifications. A model based on infinite low angle boundaries could not reproduce the long-range stress field of the numerical calculations; an analytical correction for this simplification is presented. Infinite parallel dislocations overestimated the long-range stresses compared with finite segments. The effect of randomness in dislocation distributions was studied and average stress fields calculated, which were used to estimate the stress fields of more complex pile-up arrangements. Results for multiple pile-ups do not support classical arguments for the Hall–Petch relationship. Distributions of excess dislocations produce considerable long-range stresses which are not effectively screened by pile-ups of the opposite sign.  相似文献   

13.
《Intermetallics》1999,7(7):821-827
Creep mechanisms of fully lamellar TiAl with a refined microstructure (γ lamellae: 100–300 nm thick, α2 lamellae: 10–50 nm thick) have been investigated. A nearly linear creep behavior (i.e. the steady-state creep rate is nearly proportional to the applied stress) was observed when the alloy was creep deformed at low applied stresses (<400 MPa) and intermediate temperatures (650–810°C). Since the operation and multiplication of lattice dislocations within both γ and α2 lamellae are very limited in a low stress level as a result of the refined lamellar microstructure, creep mechanisms based upon glide and/or climb of lattice dislocations become insignificant. Instead, the motion of interfacial dislocation arrays on γ/α2 and γ/γ interfaces (i.e. interface sliding) has found to be a predominant deformation mechanism. According to the observed interfacial substructure caused by interface sliding and the measured activation energy for creep, it is proposed that creep deformation of the refined lamellar TiAl in the intermediate-temperature and low-stress regime is primarily controlled by the viscous glide of interfacial dislocations.  相似文献   

14.
Constant tensile stress creep tests under the condition of 760~816°C/172~276 MPa in an air environment are conducted, and the microstructural evolution during primary creep deformation at the creep condition of 816°C/172 MPa was observed by transmission electron microscopy (TEM) for the lamellar structured Ti-45. 5Al-2Cr-2.6Nb-0.17W-0.lB-0.2C-0.15Si (at.%) alloy. The amount of creep strain deformed during primary creep stage is considered to be the summation of the strains occurred by gliding of initial dislocations and of newly generated dislocations. Creep rate controlling process within the primary stage seems to be shifting from the initial dislocation climb controlled to the generation of the new dislocations by the phase transformation of 2 to as creep strain increases.  相似文献   

15.
The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.  相似文献   

16.
In this investigation, dislocations of a lamellar TiAl alloy are analyzed after creeping in the primary range at 800°C/200MPa in order to interpret their mobility It was found that the dislocation density in γ-laths decreased as the creep deformation proceeds within primary creep regime Schmid factor analysis suggests that the creep deformation in the early stage of the primary creep regime is controlled by the gliding of some of the initial dislocations which have a high enough Schmid factor As the creep deformation progressed, those dislocations with high Schmid factors slip preferentially to be annihilated at the α-γ interface For further continuous deformation, dislocation generation is required, and for this, α-phase is transformed to γ-phase in order to generate new dislocations A slow dislocation generation process by phase transformation of α-phase compared with the absorbing rate to sinks is responsible for the decreasing dislocation density as the creep strain increases  相似文献   

17.
《Intermetallics》2000,8(2):165-177
The creep deformation characteristics of a lamellar polysynthetically twinned (PST) crystal of the composition Ti–48 mol% Al was investigated as a function of the lamellar orientation with respect to the compression axis and the applied stress. The creep resistance of hard PST orientation with the lamellar plates parallel or perpendicular to the compression axis was substantially higher than that of soft orientations with their lamellar plates oriented at intermediate angles to the compression axis. This fact could be associated with the predominant deformation of the hard orientations by deformation modes with the slip plane inclined to the lamellar interfaces in contrast to the predominant deformation of the soft orientations by deformation modes with the slip plane parallel to the lamellar plates. In the soft orientations, mainly straight ordinary dislocations with the Burgers vector b=1/2[1-10] aligned parallel to the lamellar interfaces were encountered in domains with a high resolved shear stress as well as in domains with no resolved shear stress. In the hard orientations, ordinary dislocations b=1/2[110] and superdislocations with a Burgers vector of the type b=1/2〈112] were observed. Despite a high resolved shear stress in certain oriented domains, superdislocations of the type b=〈101] were not found to play a considerable role during creep deformation under the investigated conditions. Cross twinning contributed to the deformation in favourably oriented variants, but twinning parallel to the lamellar interfaces was much more pronounced in the soft orientations leading to a substantial lamellar refinement. This microstructural hardening during creep results in the observed stress exponents of the soft orientations near unity at high stresses. A change in stress exponent from near unity at high stresses to about 9 at low stresses occurs at about 200 MPa. A critical stress of about 200 MPa for parallel twinning is proposed as a reason for the change in stress exponent.  相似文献   

18.
《Scripta materialia》2003,48(5):599-604
It is shown by analysis, including through the incorporation of dislocation pile-ups, that the intragranular movement of dislocations plays little or no significant role in the deformation of high purity yttria-stabilized zirconia when testing at 1673 K at stresses below ∼100 MPa. It is proposed instead that deformation occurs through interface-controlled Coble diffusion creep.  相似文献   

19.
20.
在ZM-1(Mg-5Zn-0.6Zr)合金的基础上,适量增加Zn的含量并加入重稀土元素Gd,设计了Mg-5.5Zn-2Gd-0.6Zr实验合金。采用砂型铸造工艺制备实验合金试样,在不同温度和应力条件下对该实验合金和ZM-1合金的蠕变曲线进行了测试。结果表明:在相同条件下,Mg-5.5Zn-2Gd-0.6Zr实验合金的稳态蠕变速率较ZM-1合金的降低了一个数量级;当施加应力为40 MPa时,实验合金的蠕变激活能Q200-250℃=142.0 kJ/mol,接近镁的自扩散激活能,蠕变受位错攀移控制,而ZM-1合金在相同应力下蠕变激活能Q200-250℃=88.5 kJ/mol,接近镁的晶界扩散激活能,蠕变受晶界滑移控制。合金在200℃条件下的应力指数n=4.21,而ZM-1合金的应力指数n=2.21。因此,认为加入重稀土元素Gd后实验合金的蠕变机制发生改变,200℃时的蠕变机制为位错攀移机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号