首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
钢纤维混凝土与钢筋粘结锚固性能的研究   总被引:2,自引:0,他引:2  
本文根据钢纤维混凝土与钢筋的一次拉拔和低周反复拉压锚固试验的结果,论证了钢纤维混凝土良好的粘结锚固性能,建立了钢纤维混凝土与钢筋粘结强度的计算公式,并通过可靠性分析提出钢筋设计锚固长度的建议。上述计算公式和建议与普通混凝土的相应计算公式和建议衔接,物理概念清楚,可供进行钢纤维混凝土结构设计时参考。  相似文献   

2.
根据36个拉拔试件的试验结果,探讨了变形钢筋与钢纤维陶粒混凝土的粘结锚固机理,可供修订规范和工程应用时参考.  相似文献   

3.
钢纤维高强混凝土与钢筋的粘结性能试验研究   总被引:1,自引:0,他引:1  
通过126个尺寸为150mm立方体的钢纤维高强混凝土标准试件,进行了钢筋全长粘结的拔出试验,分别量测出光圆钢筋、变形钢筋与钢纤维高强混凝土的荷载与自由端的粘结滑移关系,研究了钢纤维体积率和钢纤维类型对钢纤维高强混凝土粘结性能的影响。根据现行《钢纤维混凝上试验方法》进行的试验结果表明,钢纤维的加入对光圆钢筋与高强混凝土的极限粘结强度无显著影响;对变形钢筋与高强混凝土的极限粘结强度有一定影响,但缺乏明显的规律性。通过对试件破坏形态及试验结果的分析得出结论,现行《钢纤维混凝土试验方法》有关粘结性能的试验方法不适用于高强混凝土及钢纤维高强混凝土。  相似文献   

4.
将纳米SiO_2、纳米CaCO_3、钢纤维同时掺入混凝土中,通过Losberg粘结试件和中心粘结试件的拉拔试验分析钢筋之间的粘结性能,讨论钢纤维体积率、纳米SiO_2含量、纳米CaCO_3含量、纳米材料种类对粘结性能的影响,结果表明增加基体混凝土强度可改善粘结性能;钢纤维体积率最佳值为1.5%,纳米SiO_2最佳含量为0.5%~1%,纳米CaCO_3最佳含量为2%。  相似文献   

5.
6.
钢纤维膨胀混凝土变形特性试验研究   总被引:1,自引:0,他引:1  
对钢纤维膨胀混凝土自由和限制条件下的变形性能进行了系统的试验研究,从宏观力学角度对钢纤维的限制膨胀变形的作用进行了理论分析,并对钢纤维膨胀混凝土的膨胀收缩变形进行了全过程分析。  相似文献   

7.
通过对84个轻质混凝土试块与HRB500月牙带肋钢筋粘结锚固试件的中心拉拔试验,研究轻质混凝土与变形钢筋之间的粘结锚固性能。研究表明:类似于普通混凝土,轻质混凝土与HRB500钢筋的粘结锚固性能的影响因素为混凝土强度、保护层厚度、钢筋锚固长度、钢筋直径和配箍率;相同强度等级的轻质混凝土的粘结锚固性能略低于普通混凝土。轻质混凝土与HRB500钢筋的极限粘结应力与以下因素均存在线性关系,分别为:轻质混凝土的轴心抗拉强度、钢筋的相对保护层厚度、锚固长度、直径和配箍率等。  相似文献   

8.
通过中心拔出试验对钢纤维掺量为0%~2%的活性粉末混凝土与变形钢筋间的粘结性能进行研究,结果表明钢纤维掺入后能提高活性粉末混凝土的抗拉强度,改变粘结破坏形式,得到粘结应力-滑移曲线的下降段;钢纤维活性粉末混凝土与钢筋间的拔出粘结应力-滑移曲线可分为微滑移段、滑移段、非线性段及下降段四个阶段,劈裂粘结强度及极限粘结强度随钢纤维掺量的增加约呈线性增长。  相似文献   

9.
为研究异型外观的钢纤维与混凝土的粘结性能,设计开发了弓型、螺旋型、端勾型、束状钢纤维等系列异型钢纤维,再分别将平直型和异型的钢纤维埋入砂浆中,开展了粘结强度的对比试验,并进行了分析。试验研究结果表明:钢纤维截面形态的改变使其与混凝土基体的粘结强度的增长超过100%;两端锚固作用改进后的钢纤维对粘结强度的提高是平直型钢纤维的400%;经过两类改进工艺叠加实施的异型钢纤维,对比平直型钢纤维,其粘结强度的提升超过了700%。  相似文献   

10.
钢纤维高强陶粒混凝土与钢筋的粘结性能试验研究   总被引:1,自引:0,他引:1  
主要通过42个局部粘结的中心拔出试验,研究不同钢纤维体积率、不同钢筋直径和不同钢纤维长径比对钢纤维高强陶粒混凝土与钢筋粘结性能的影响;用能量吸收和等效粘结强度评价了钢纤维高强陶粒混凝土与钢筋之间的粘结韧性。试验结果表明:不掺钢纤维的高强陶粒混凝土的破坏形式为劈裂破坏,掺钢纤维的高强陶粒混凝土的破坏形式为钢筋拔出破坏;在其他条件相同的情况下,钢纤维掺量越高其极限粘结强度越高(相对于不掺钢纤维的陶粒混凝土,钢纤维体积率为0.5%,1%,1.5%时,其极限粘结强度分别提高了6.7%,13.4%,18.6%);直径为22mm的钢筋的极限粘结强度比直径为16mm的钢筋的极限粘结强度低12.3%。  相似文献   

11.
异形钢纤维改善混凝土性能研究   总被引:4,自引:1,他引:3  
胡晓波 《工业建筑》2006,36(9):62-67
采用6种异形钢纤维在体积掺量分别为0.5%、1.0%的情况下,配制CF30、CF50异形钢纤维混凝土,试验结果表明,异形钢纤维混凝土抗折、抗剪和劈拉强度以及弯曲韧性,较基准混凝土有明显提高;干缩值降低,早期塑性开裂也明显减少;不同特征的异形钢纤维改性效果也存在差异。研究发现,《钢纤维混凝土试验方法》(CECS 13∶89)计算纤维混凝土承载能力变化系数的方法有偏差。  相似文献   

12.
利用电迁移钢筋锈蚀法,通过中心拉拔试验对钢筋混凝土非均匀锈蚀试件的粘结性能进行研究。试验结果表明:在非均匀锈蚀条件下,试件的开裂不仅取决于锈蚀率,还与锈蚀面积比有关,相同条件下,锈蚀面积比越大,保护层胀裂所需的锈蚀率越小;锈胀裂缝对非均匀锈蚀无箍筋试件的粘结强度有明显影响,随裂缝的产生及发展,试件粘结强度急剧下降,而配箍试件则不然,即便是裂缝宽度达0.2 mm,极限粘结强度也不会下降;锈蚀率在2.4%以内,非均匀锈蚀对试件粘结滑移性能的影响并不十分显著。  相似文献   

13.
钢纤维混凝土弯曲韧性试验研究   总被引:1,自引:0,他引:1  
试验研究和工程实践表明,钢纤维混凝土具有良好弯曲韧性,《纤维混凝土结构技术规程》(CECS38∶2004)在隧洞支护与补砌、工业建筑地面设计中引入弯曲韧度指数和弯曲韧度比,这与以往基于ASTMC1018弯曲韧性指数不同。通过四点弯曲梁弯曲韧性试验,利用不同方法计算弯曲韧性指标,对钢纤维体积率和混凝土强度对钢纤维混凝土弯曲韧性的影响进行分析。  相似文献   

14.
冻融循环作用后变形钢筋与混凝土粘结性能退化研究   总被引:2,自引:0,他引:2  
冻融循环作用后,混凝土内部发生损伤,混凝土的质量损失增加,超声波速、抗压强度和劈裂抗拉强度下降;而随着冻融循环作用次数的增加,钢筋与混凝土的粘结强度下降,钢筋自由端的峰值滑移量则增大;通过对3种直径螺纹钢筋与混凝土冻融后的粘结性能的试验研究得出:冻融循环作用后钢筋与混凝土粘结性能下降,特别是极限粘结强度随着冻融循环作用次数增加而下降,根本原因是由于冻融作用损伤混凝土造成混凝土的强度下降所致。  相似文献   

15.
在劲性钢筋混凝土配筋设计时较少考虑交叉梁的钢筋冲突、钢筋弯钩锚固及钢骨开孔。以具体工程为例,对穿筋孔直径的确定,钢柱箍筋孔位置确定,钢柱的梁筋孔位置确定,钢梁箍筋孔、拉钩孔位置确定,钢梁的柱纵筋孔位置确定提出了建议。  相似文献   

16.
聚丙烯纤维增强膨胀混凝土阻裂抗渗性能研究   总被引:5,自引:2,他引:5  
研究了聚丙烯纤维和微膨胀复合对混凝土抗折强度、抗渗性和收缩变形的影响。研究表明 ,聚丙烯纤维和膨胀剂复合与聚丙烯纤维或膨胀剂单一作用比 ,2 8d抗折强度分别提高 7 5 %和 9 9% ,渗水高度分别降低 4 6 %和 6 1% ,阻裂效果显著提高 ;纤维对膨胀混凝土 7~ 14d的膨胀有明显的约束  相似文献   

17.
孙道胜  邓敏  唐明述 《工业建筑》2005,35(4):69-71,47
研究了聚丙烯 (PP)纤维、聚乙烯醇 (PVA)纤维及聚丙烯和聚乙烯醇混杂纤维增强膨胀混凝土的抗渗、抗冻、耐磨等耐久性能和变形特性。结果显示 ,纤维及混杂纤维能显著提高膨胀混凝土的抗渗、抗冻和耐磨性能 ,且混杂纤维优于单一纤维 ,纤维对膨胀混凝土的膨胀有一定的约束作用。分析认为 ,纤维与微膨胀复合能有效改善混凝土的内部结构 ,减少由变形变化引起的混凝土原生缺陷 ,为提高混凝土耐久性探索了一条新的技术途径  相似文献   

18.
钢纤维混凝土疲劳损伤行为研究   总被引:9,自引:0,他引:9  
鞠杨  樊承谋 《工业建筑》1997,27(3):38-42,62
研究了轴向压缩疲劳荷载作用下钢纤维混凝土的疲劳损伤演化行为,给出了描述该损伤行为演变规律的力学模型。  相似文献   

19.
钢纤维混凝土力学特性与本构模型研究   总被引:1,自引:0,他引:1  
采用MTSS10和直径为74mm的大尺寸SHPB实验装置,对超短钢纤维混凝土进行了动静态力学性能实验。基于所测的应力-应变曲线,对钢纤维混凝土在不同应变率下的弹性模量、峰值应力、峰值应变和韧度变化规律进行了探讨。此外,根据曲线特点提出了一种含损伤本构模型。  相似文献   

20.
型钢混凝土短柱的粘结性能与极限承载力   总被引:2,自引:0,他引:2  
通过16个型钢混凝土短柱试验,分析了型钢-混凝土的粘结机理,探讨了配箍率、混凝土强度、混凝土保护层厚度等因素对轴心受压短柱粘结性能和极限承载力的影响。通过编程建立有限元模型,可为型钢混凝土轴压柱极限承载力和粘结强度的计算提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号