首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hybrid metal matrix composites are a class of material system, with two or more discrete particulate reinforcement. Notwithstanding their superior properties, their widespread application is constrained by the difficulty in machining them. Non-conventional processes such as electrical discharge machining can be applied to machine such composites. This work reports on the application of EDM to machine cast aluminum–silicon carbide–boron carbide and cast aluminum–silicon carbide–glass hybrid metal matrix composites and how the metal removal rate and surface finish vary in response to the various EDM parameters  相似文献   

2.
In this work, thin films deposited by pulsed DC magnetron sputtering of [Ti–Al/Ti–Al–N] n and [Ti–Cr/Ti–Cr–N] n multilayers of nanometric periods were analyzed by AFM in contact mode to measure values of lateral and normal forces. From these measurements, the coefficient of friction (COF) of these materials in contact with the AFM tip was calculated. Measurements were made with three types of silicon tips, diamond-coated, Pt–Cr-coated, and bare silicon. Significant differences between the tip materials in contact with the samples, which affected the COF, were observed. The effect of the environmental layer of water covering the surface sample and the tip appears as the most important factor affecting the tribology behavior of the tip-sample contact. For diamond-coated and bare silicon tips there is an additional adherence force increasing the normal load. But for tips platinum–chromium-coated there is a repulsive force due to this water layer, which behaves as a lubricant layer before a threshold load.  相似文献   

3.
Aluminum is widely used in electrical contacts due to its electrical properties and inexpensiveness when compared to copper. In this study, we investigate the influence of operating conditions like contact load (pressure), sliding speed, current, and surface roughness on the electrical and tribological behavior of the interface. The tests are conducted on a linear, pin-on-flat tribo-simulator specially designed to investigate electrical contacts under high contact pressures and high current densities. Control parameters include sliding speed, load, current, and surface roughness. The response of the interface is evaluated in the light of coefficient of friction, contact resistance, contact voltage, mass loss of pins, and interfacial temperature rise. As compared to sliding speed, load, and roughness, current is found to have the greatest influence on the various measured parameters. Under certain test conditions, the interface operates in a “voltage saturation” regime, wherein increase in current do not result in any increase in contact voltage. Within the voltage saturation regime the coefficient of friction tends to be lower, a result that is attributed to the higher temperatures associated with the higher voltage (and resulting material softening). Higher interfacial temperatures also appear to be responsible for the higher wear rates observed at higher current levels as well as lower coefficients of friction for smoother surfaces in the presence of current.  相似文献   

4.
Laden  K.  Guérin  J.D.  Watremez  M.  Bricout  J.P. 《Tribology Letters》2000,8(4):237-247
The use of light materials such as aluminium matrix composites reinforced with silicon carbide (SiC) in railway braking devices is considered. Four quarter‐scale discs were produced by the vortex method with two distinct matrices and a SiC reinforcement with two different shapes and rates. Continuous braking tests (120 s) were run with organic pads in a dry environment. The 390.0 matrix discs exhibited a higher wear resistance than one produced from a 514.0 matrix. The use of a spherical SiC, instead of an angular one, very markedly improved the wear resistance of the antagonist materials. During the braking tests, the wear fragments become oxidized and their presence in tribocontact increases friction and pad wear but decreases the disc wear. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The present study investigates the relationship of process parameters in electro-discharge of CK45 steel with novel tool electrode material such as Al–Cu–Si–TiC composite produced using powder metallurgy (P/M) technique. The central composite second-order rotatable design had been utilized to plan the experiments, and response surface methodology (RSM) was employed for developing experimental models. Analysis on machining characteristics of electrical discharge machining (EDM) die sinking was made based on the developed models. In this study, titanium carbide percent (TiC%), peak current, dielectric flushing pressure, and pulse on-time are considered as input process parameters. The process performances such as material removal rate (MRR) and tool wear rate (TWR) were evaluated. Analysis of variance test had also been carried out to check the adequacy of the developed regression models. Al–Cu–Si–TiC P/M electrodes are found to be more sensitive to peak current and pulse on-time than conventional electrodes. The observed optimal process parameter settings based on composite desirability are TiC percent of 18%, peak current of 6 A, flushing pressure of 1.2 MPa, and pulse on-time of 182 μs for achieving maximum MRR and minimum TWR; finally, the results were experimentally verified. A good agreement is observed between the results based on the RSM model and the actual experimental observations. The error between experimental and predicted values at the optimal combination of parameter settings for MRR and TWR lie within 7.2% and 4.74%, respectively.  相似文献   

6.
In order to improve the tribological properties of titanium-based implants, sodium hydroxide (NaOH), hydrogen peroxide (H2O2) solutions, sol–gel hydroxyapatite (HA) film, thermal treatment and combined methods of NaOH solution/HA film, H2O2 solution/HA film are used to modify the surfaces of Ti–6Al–4V (coded TC4). The chemical states of some typical elements in the modified surfaces were detected by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of modified surfaces sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the results, complex surfaces with varied components are obtained. All the methods are effective in improving the wear resistance of Ti–6Al–4V in different degrees. Among all, the surface modified by the combined method of NaOH solution/HA film gives the best tribological performances. The friction coefficient is also greatly reduced by the modification of NaOH solution. The order of the wear resistance under 3 N is as following: Ti–NaOH–HA>Ti–NaOH>Ti–HA>Ti–H2O2–HA>Ti–H2O2 >Ti–500; under 1 N is Ti–HA, Ti–NaOH–HA>Ti–NaOH. For Ti–H2O2, a very low friction coefficient and long wear life over 2000 passes is obtained under 1 N. SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro–crack dominate the wear of Ti–HA; slight abrasive wear dominate the wear mechanism of Ti–NaOH and microfracture and abrasive wear for Ti–NaOH–HA and Ti–H2O2–HA, while the sample modified by thermal treatment is characterized by sever fracture. The superior friction reduction and wear resistance of HA films are greatly attributed to the slight plastic deformation of the film. NaOH solution is superior in improving the wear resistance and decreasing the friction coefficient under relative higher load (3 N) and H2O2 is helpful to reduce friction and wear under relatively lower load (1 N). Combined method of Ti–NaOH–HA is suggested to improve the wear resistance of Ti–6Al–4V for medial applications under fretting situations.  相似文献   

7.
Fretting fatigue behavior of cavitation shotless peened (CSP) titanium alloy, Ti–6Al–4V was investigated. Constant amplitude fretting fatigue tests were conducted at several maximum stress levels, σmax, ranging from 400 to 555 MPa with a stress ratio of 0.1. Test results showed that the fretting fatigue life was enhanced by CSP treatment as compared to the unpeened specimen, but the enhancement was not as large as that from the shot-peening treatment. Residual stress measurements by X-ray diffraction method before and after fretting test showed that residual compressive stress was relaxed during fretting fatigue. Before fretting, CSP specimen had higher compressive residual stress on the surface than the shot-peened specimen. However, greater residual stress relaxation occurred in CSP specimen such that the relaxed compressive residual stress profile near the contact surface of CSP specimen was lower than that of shot-peened specimen. This lower compressive residual stress from fretting fatigue was the reason for shorter fretting fatigue life of CSP specimen as compared to shot-peened specimen at the applied stress level.  相似文献   

8.
Pulse current auxiliary transient liquid-phase (TLP) diffusion bonding of SiCp/2024Al composite sheet was investigated at 580 °C using mixed Al–Cu–Ti powder interlayer. The optimal process parameters were applied as follows: pulse current density of 1.15?×?102 A/mm2, pressure of 0.5 MPa, vacuum of 1.3 ×?10?3 Pa, and bonding time from 15 to 60 min. The bonding quality is evaluated by microstructure characterization and mechanical properties of the joints. The mechanism of pulse current auxiliary TLP diffusion bonding process is analyzed. The results indicated that the dense joints without cavity consisted of the Al-based solid solution, pure Ti, Al2Cu, and TiAl3 intermetallic phase. Microhardness of joints was obviously higher than Cu diffusion zone and substrate materials zone. The shear strength of the joints monotonically increased with bonding time. The maximum value exceeded 154.1 MPa in bonding time of 60 min. Pulse current generated Joule heat, high-temperature spark plasma, and electromigration, which guarantee the feasibility of bonding process and high-quality joint.  相似文献   

9.
Precipitation in Fe–Cr–Ni–Al–(Cu) model alloys was investigated after ageing for 0.25, 3, 10 and 100 h at 798 K. Characterization of nanoscale precipitates was performed using three-dimensional atom probe microscopy and transmission electron microscopy. The precipitates are found to be enriched in Ni and Al (Cu) and depleted in Fe and Cr. After 0.25 h of ageing the number density of precipitates is ∼8×1024 m−3, their volume fraction is about 15.5% and they are near-spherical with an average diameter of about 2–3 nm. During further ageing the precipitates in the both alloys grow, but the coarsening behaviour is different for both alloys. The precipitates of the Cu-free alloy grow much faster compared with the Cu-containing alloy and their density decreases. Precipitates in Cu-free alloy change to plate shaped even after 10 h of ageing, whereas those of Cu-containing alloy remain spherical up to 10 h of ageing. The influence of Cu addition on precipitation in these model alloys is discussed with respect to the different coarsening mechanisms.  相似文献   

10.
The purpose of this study is to explore the effect of SiC reinforcement along with immiscible element addition in spray formed Al–Si base alloy. The investigation is done for four different compositions, i.e., Al–Si base alloy, Al–Si/SiC, Al–Si–5Sn/SiC and Al–Si–10Sn/SiC composite. The dry sliding wear properties of base alloy and composites were investigated against EN 31 steel at five different normal loads (14.7, 24.5, 34.3, 44.1 and 53.9 N). The tests were carried out in dry sliding conditions with a sliding speed of 1.6 ms−1 over pin-on-disc tribometer. Each composition is tested at four different temperatures 50, 75, 100 and 150 °C. To determine the wear mechanism, the worn surfaces of the samples were examined using scanning electron microscope (SEM). The composites emerge to be better wear resistant material than base alloy especially at higher loads. The optimum wear reduction was obtained in Al–Si–10Sn/SiC composite at all the different normal loads and temperatures.  相似文献   

11.
12.
Fretting fatigue behavior of cavitation shotless peened titanium alloy, Ti–6Al–4V coupons was investigated using finite element method and a critical plane-based multi-axial fatigue parameter. Cavitation shotless peening (CSP)-induced compressive residual stress, which was larger at the contact surface than its counterpart from the shot peening (SP). However, compressive residual stress decreased more sharply with distance from the contact surface in CSP than in SP. Analysis using a critical plane-based multi-axial fatigue parameter demonstrated that the crack initiation would occur inside the cavitation shotless peened specimen which matched with the experimental observations. On the other hand, crack initiation would occur on the contact surface in the shot peened specimen which again was in agreement with experiments. The analysis also showed that the crack propagation part of the total fretting fatigue life was longer in the shot peened specimen than in the cavitation shotless peened specimen while the crack initiation part was almost equal from both peening methods. Therefore, CSP could not improve the fretting fatigue life/strength as much as the SP did but it improved relative to the un-peened specimen.  相似文献   

13.
Titanium and its alloys are attractive materials due to their unique high strength–weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. The problems that arise during grinding of titanium alloys are attributed to the high specific energy and high grinding zone temperature. Significant progress has been made in dry and semidry machining recently, and minimal quantity lubrication (MQL) machining in particular has been accepted as a successful semidry application because of its environmentally friendly characteristics. A number of studies have shown that MQL machining can show satisfactory performance in practical machining operations. However, there has been few investigation of MQL grinding of special alloys like titanium alloys and the cutting fluids to be used in MQL grinding of these alloys. In this study, vegetable and synthetic esters oil are compared on the basis of the surface quality properties that would be suitable for MQL applications. The cutting performance of fluids is also evaluated using conventional wet (fluid) grinding of Ti–6Al–4V. As a result, synthetic ester oil is found to be optimal cutting fluids for MQL grinding of Ti–6Al–4V.  相似文献   

14.
The paper demonstrates a versatile procedure suitable for industrial implementation of temperature measurement on a hot titanium alloy. The driving force has been the need for an accurate temperature measurement during additive manufacturing using laser welding technology where Ti–6Al–4V-wire is melted. The challenges consider both industrial constraints and the varying emissivity of the surface. Measurements makes use of a narrow bandwidth spot radiation pyrometer and a calibration procedure for estimation of the surface temperature through spectral emissivity estimation. The theoretical results are validated through experiments. A number of difficulties in radiation temperature measurements for metals with varying surface properties are discussed; especially the case of surface oxidation. The uncertainty in temperature reading due to the uncertainty in the emissivity estimate is established along with a model that qualitatively describes surface oxidation. The procedure is expected to be useful for several manufacturing applications where it is important to control high temperatures.  相似文献   

15.
Plasma nitriding was performed on Ti–6Al–4V samples at 520 °C in two environments (pure nitrogen and a mixture of nitrogen and hydrogen in the ratio of 3:1) for two different time periods (4 and 18 h). Fretting wear tests were conducted on unnitrided and nitrided samples for 50,000 cycles using alumina ball counterbody. Plasma nitriding reduced the tangential force coefficient of Ti–6Al–4V. The samples nitrided for 4 h exhibited higher hardness and lower tangential force coefficient compared to the specimens nitrided for 18 h. The samples nitrided in nitrogen–hydrogen mixture environment exhibited higher hardness and lower tangential force coefficient compared to the specimens nitrided in pure nitrogen. The samples plasma nitrided in nitrogen–hydrogen mixture for 4 h exhibited the highest hardness and the lowest tangential force coefficient. The wear volume and specific wear rate of the plasma nitrided samples were lower than those of the unnitrided samples. A consistent trend was not observed regarding which nitriding condition would result in lower wear volume and specific wear rate at different loads.  相似文献   

16.
Both plasma chromizing and carburization following plasma chromizing (duplex treatment) for Ti–Al–Nb alloy were performed, respectively, and the microstructure, dynamic ultra-microhardness, and elastic modulus of the alloying layer were determined. Using silicon nitride (Si3N4) balls as the counterface materials, dry sliding friction tests on the substrate, the chromized layer, and the duplex-treated layer were completed by ball-on-disk tribometer at room temperature. The results indicated that the duplex-treated layer was mainly composed of Cr23C6, Cr2Nb, pure chromium, and carbon phases, while the chromized layer consisted of Al8Cr5 and Cr2Nb phases. The ultra-microhardness of the duplex-treated layer was higher than that of the chromized layer, whereas the elastic modulus of the duplex-treated layer was lower than that of the chromized layer. The friction coefficient of the duplex-treated layer was about three times lower than that of the chromized layer, while the wear rate was one order of magnitude lower than that of the chromized layer.  相似文献   

17.
This paper describes an attempt to enhance the wear properties of hypereutectic cast aluminium–silicon alloys produced by semi-solid metal (SSM) processing technique. The rheological experiments on SSM slurries were performed under continuous cooling condition from liquidus temperature. Wear characteristics of alloy under investigation were studied using pin on flat wear system over a range of normal load (10–40 N) at constant average sliding speed (0.2 m/s) against cast iron and stainless steel counter surface. Stir cast alloy showed lesser weight loss compared to conventional cast alloy. Stir cast and conventional cast alloys showed higher weight loss against the stainless steel as compared to that against cast iron counter surface. Optical microscopy of the conventional cast and stir cast hypereutectic alloy has shown that stir casting causes refinement of primary silicon particles and modification of eutectic silicon compared to conventional cast alloy. The scanning electron microscopy of wear surfaces was carried out to investigate the mode of wear.  相似文献   

18.
Rare earth (RE) elements have positive effects on Al alloy, while most research is focused on microstructure and mechanical properties. As important application indices, toughness and plasticity are properties that are sensitive to alloy fracture characteristics, and few research studies have characterized the fracture properties of Al–Cu–Mn alloy on RE elements. The effect of different contents of Y on the fracture properties of Al–Cu–Mn alloy is investigated. T6 heat treatment (solid solution and artificial aging treatment), optical microscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) methods are applied to the alloy. Results showed that when Y element is present at 0.1%, the section of the as-cast alloy has smaller sized dimples and the fracture mode presents ductile features. Slight changes in hardness are also observed and maintained at about 60 HV. With increasing content of the RE element Y from 0.1 to 0.5%, the θ phase and Cu atoms in the matrix were reduced and most stopped at Grain boundaries (GBs). Micro-segregation and an enriched zone of Y near the GBs gradually increased. At the same time, the inter-metallic compound AlCuY is aggregated at grain junctions causing deterioration of the micro-structure and fracture properties of the alloy. After T6 treatment, the flatness of the fracture surface was lower than that of all the as-cast alloy showing lots of dimples and teared edges with a significant increase in hardness. When Y content was 0.1%, the strength and hardness of the alloy increased due to refinement of the grain strengthening effect. The content of Y elements segregated in the inter-dendritic zone and GBs is reduced. Plasticity and deformation compatibility also improved, making cracks difficult to form and merge with each other along adjacent grain junctions and providing an increased potential for ductile fracture. This paper proposes the addition of RE Y as an effective and prospective strategy to improve the fracture properties of the Al–Cu–Mn alloy and provide a meaningful reference in terms of improving overall performance.  相似文献   

19.
The titanium (Ti) alloys are the notoriously “difficult-to-machine” aerospace materials. Compared with the traditional mechanical cutting methods which are costly because of high tooling costs, electrodischarge machining (EDM) is an effective machining method for the Ti alloys. The energy distribution during the EDM process of Ti alloys was rarely reported, though it is a very important factor that can affect the machining performance. In this work, the energy distribution during EDM of Ti–6Al–4V has been investigated by a novel method, at different EDM parameters including interelectrode distance, pulse duration, polarity, and electrode shape. The results of this work show that energy distribution characteristics are greatly affected by the power density applied on the electrodes and more energy is distributed into the anode than into the cathode, which are in good concurrence with the results obtained by other authors. The results of this work will be helpful for further improving the technological performance of this process.  相似文献   

20.
The microstructures of Zn–4 wt.% Al alloy with 0.1 mm diameter were prepared by microprecision casting based on gypsum-bonded investment casting. Aspect ratio up to 200 can be replicated in the case of the centrifugal speed of 1,500 rpm and the mold temperature of 270°C. The flow length was significantly influenced by the centrifugal speed and the preheating temperature of the mold. The flow length increases as the rotational speed and the mold temperature increase. The grain size and mechanical properties can be varied within a wide range by choosing different preheating temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号