首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了突破传统隔振器刚度和承载能力之间的矛盾,需要隔振器具有高的静态刚度,低动态刚度的特性.如今的准零刚度隔振器技术可以实现低频微幅隔振,但是对于大幅振动,隔振效果并不明显甚至失效,因此突破宽幅隔振成为隔振领域亟待解决的问题.为此,我们利用多稳态折纸通过并联装配的方式,构造具有宽幅零刚度区间的折纸型隔振器,以解决传统隔振器振动抑制幅值较低的问题.本文建立了宽零刚度隔振器模型,提出宽幅零刚度的设计方法,并通过动力学分析分析了模型的隔振效果.最后搭建试验样机,验证了理论的正确性.这种设计打破了传统准零刚度隔振器单点准零的设计准则,能够在一个大幅范围内保证稳定性,同时实现零刚度,极大拓宽了隔振器的适用范围.这种设计理念能够被用在新隔振材料设计和航空、船舶等大幅低频动态环境中.  相似文献   

2.
为研究某工业厂房井字梁楼盖在简谐载荷作用下的异常振动问题,根据现场动力特性测试结果,采用有限元软件Abaqus建立井字梁楼盖局部板-柱模型,通过增设调谐质量阻尼器(tuned mass damper,TMD)和布置隔振器对井字梁楼盖的竖向振动研究进行控制.结果 表明:增设TMD和布置隔振器均可以使楼盖竖向振动峰值加速度...  相似文献   

3.
Electronic equipment’s system is always manufactured as a superprecision system. However, it will be used in harsh environment. For example, the computer in moving vehicles will be acted by vibrations. The objective of this paper is to provide a systematic investigation to test and computer-aided design of the vibration isolator for protection of electronic equipment’s system in harsh vibration environment. A micro-oil damping vibration isolator is designed and manufactured through coupling the oil and spring by ingenious tactics. The structure of the oil damping vibration isolator can achieve circulating oil damping function with an inner tube and an outer tube (some orifices are manufactured on upside and underside of the inner tube). The dynamics of the key model machine is systematically investigated. Based on the test, a nonlinear dynamic model for the vibration isolator is presented by analyzing the internal fluid dynamic phenomenon with respect to the vibration isolator. The model considers all the physical parameters of the structure. Comparisons with experimental data confirm the validity of the model. In the other, the model is integrated by introducing normalization measure. The normalization model shows the actual physical characteristics of the oil damping vibration isolator by considering quadratic damping, viscous damping, Coulomb damping, and nonlinear spring forces. An approximate solution is deduced by introducing harmonic transform method and Fourier transform method. Therefore, a parameter-matching optimal model for computer-aided design of the vibration isolator is build based on approximate solution. An example confirms the validity of the computer-aided design integration.
Ping YangEmail:
  相似文献   

4.
针对传统线性隔振器在降低共振峰值的同时会牺牲隔振性能的矛盾,设计了一种含分段阻尼的隔振器.首先,采用移动凸轮变阻尼装置,通过凸轮廓线的设计使系统的垂向阻尼系数的受振动位移大小控制并呈现分段线性特征,分析了该装置的阻尼特性.然后将分段阻尼装置应用于隔振器中,建立了含分段阻尼的积极隔振系统模型及其动力学方程,通过能量等效原理求出了分段阻尼系统的等效线性阻尼系数,求解了简谐力激励下系统响应的理论解,并用四阶龙格-库塔法数值仿真验证了理论解的正确性.最后研究了分段阻尼隔振系统的动态特性,分析了主要参数对幅频响应特性与力传递率特性的影响.结果表明,通过合理的参数选择,分段阻尼隔振器可兼顾无阻尼隔振器与线性阻尼隔振器的优点,既能有效降低系统的共振峰值,又能保证高频区域的优秀隔振性能,为新型非线性隔振器的设计提供了理论依据.  相似文献   

5.
The topology optimization problem for linearly elastic micropolar solids is dealt with. The constituent materials are supposed to lack in general of centro-symmetry, which means that force stresses and microcurvatures are coupled, and so are couple stresses and micropolar strains. The maximum global stiffness is taken as objective function. According to the SIMP model, the constitutive tensors are assumed to be smooth functions of the design variable, that is, the material density. Optimal material distributions are obtained for several significant three-dimensional cases. The differences respect to the optimal configurations obtained with classical Cauchy materials and centrosymmetric materials are pointed out. The influence of the constants defining the non-centrosymmetric behaviour on the optimal configurations is discussed.  相似文献   

6.
This work deals with the topological design of vibrating continuum structures. The vibration of continuum structure is excited by time-harmonic external mechanical loading with prescribed frequency and amplitude. In comparison with well-known compliance minimization in static topology optimization, various objective functions are proposed in literature to minimize the response of vibrating structures, such as power flow, vibration transmission, and dynamic compliances, etc. Even for the dynamic compliance, different definitions are found in literature, which have quite different formulations and influences on the optimization results. The aim of this paper is to provide a comparison of these different objective functions and propose reference forms of objective functions for design optimization of vibration problems. Analytical solutions for two degrees of freedom system and topological design of plane structures in numerical examples are compared using different optimization formulations for given various excitation frequencies. The results are obtained by the finite element method and gradient based optimization using analytical sensitivity analysis. The optimized topologies and vibration response of the optimized structures are presented. The influence of excitation frequencies and the eigenfrequencies of the structure are discussed in the numerical examples.  相似文献   

7.
本文主要研究隔振对象重量变化对一类准零刚度隔振器隔振性能的影响,并给出了新的研究结果.文中使用欧拉屈曲梁构建负刚度调节结构并设计了隔振系统的平衡位置可调机构.假设系统有轻微的过载和超载,推导了系统的动力学方程并进行求解,定义了非线性隔振系统的力传递率及位移传递率来评价系统的隔振性能.对线性隔振系统,超载会让隔振频率略微降低,共振放大峰略微增大.对于准零刚度隔振系统,力传递率和线性系统类似,但是对于位移传递率,过载会导致系统固有频率和共振放大峰均升高,反而不利于隔振.研究结果可以对此类隔振系统的使用场合以及对过载和轻载的选择有工程指导意义.  相似文献   

8.
The optimal design of structural systems with conventional members or systems with conventional as well as passive or active members is presented. The optimal sizes of the conventional members of structural systems are obtained for dynamic loads. A modified simulated annealing algorithm is presented which is used to solve the optimization problem with dynamic constraints. The present algorithm differs from existing simulated annealing algorithms in two respects; first, an automatic reduction of the search range is performed, and second, a sensitivity analysis of the design variables is utilized. The present method converges to the minimum in less iterations when compared to existing simulated annealing algorithms. The algorithm is advantageous over classical methods for optimization of structural systems with constraints arising from dynamic loads. For certain initial values of the design variables, classical optimization methods either fail to converge or produce designs which are local minima; the present algorithm seems to be successful in yielding the global minimum design.  相似文献   

9.
基于仿生学的思想,通过模仿生物系统的结构几何构成特性,创新优化隔振模型是当今隔振领域的热门问题.本文基于仿生灵感来源的不同,对现有的仿生隔振器进行了系统的分类,并对不同设计原理的仿生隔振器恢复力本构与隔振性能做了详细的阐述和对比,旨在通过隔振器隔振频带的横向对比厘清几何构型与可调参数的影响,以此厘清隔振器几何设计和隔振性能的关系.并且,本文展望了未来仿生隔振器的发展前景和研究方向.  相似文献   

10.
Naturally evolved biological structures exhibit the optimal characteristics of light weight, high stiffness, and high strength. Based on the growth mechanism of biological branch systems in nature, an optimization method for internal stiffener plate distribution in box structures is suggested. Under the given load and support conditions, the internal stiffener plates of machine pedestal structures grow, bifurcate, and degenerate towards the direction of maximum overall structural stiffness in accordance with the adaptive growth law. The optimal and distinct distribution of internal stiffener plates with the most effective load path is thus obtained. Based on this, a size optimization for lightweight design is conducted, in which the self-weight of the structures is taken as the design objective, and the natural vibration frequency and static stiffness in the direction that is sensitive to machining accuracy are set as constraints. Finally, an optimized structure is obtained. The effectiveness of the proposed method is verified by using a precision grinder bed as an example. The results of numerical simulation and 3D–printed model experiment indicate that both the dynamic and the static performance of the optimized structure are improved, while the structural weight is reduced by compared with the initial structure. The suggested design method provides a new solution approach for the design optimization of machine pedestal structures.  相似文献   

11.
A hybrid manipulator applied to vibration isolation of the manufacturing systems is proposed in this paper. The translations and rotations of the manipulator are decoupled, so the proposed isolator can isolate vibrations with wide range of frequency, at the same time it is fully capable of adjusting the orientations of the equipments. The scheme design, inverse kinematics, workspace and dexterity are carried out in this paper. A closed form dynamic model considering the external excitations on the base platform is performed based on the Newton–Euler approach. The optimum solutions of the forces in each actuating limb are obtained by using the Moor–Penrose inverse matrix. Furthermore, a novel dynamic performance index is proposed to evaluate the estimated maximum forces in the actuating limbs; this index can help to optimally design the parameters of motor, spring and damper. In order to evaluate the performance of isolation, the displacement transmissibility and acceleration transmissibility are also analyzed. The research work provides an analytical base for the development of the novel vibration isolator.  相似文献   

12.
Recent developments on the optimization of passive damping for vibration reduction in sandwich structures are presented in this paper, showing the importance of appropriate finite element models associated with gradient based optimizers for computationally efficient damping maximization programs. A new finite element model for anisotropic laminated plate structures with viscoelastic core and laminated anisotropic face layers has been formulated, using a mixed layerwise approach. The complex modulus approach is used for the viscoelastic material behavior, and the dynamic problem is solved in the frequency domain. Constrained optimization is conducted for the maximization of modal loss factors, using gradient based optimization associated with the developed model, and single and multiobjective optimization based on genetic algorithms using an alternative ABAQUS finite element model. The model has been applied successfully and comparative optimal design applications in sandwich structures are presented and discussed.  相似文献   

13.
This study addresses the optimal changes in geometry of a two-dimensional variable geometry truss (VGT) to identify the stiffness matrix of the truss using the concept of self-identification. The optimization of the geometry changing of the VGT is a problem of selecting the optimal combination of multiple design variables from a large number of candidate sets. This study proposes a simple optimization method for determining a set of optimal geometric parameters; in this method, the approximated mode shape matrix obtained using spline interpolation techniques is used to calculate the objective function for self-identification. The objective function used in this paper is a function of the condition number of the coefficient matrix of a linear matrix equation and a criterion for self-identification. The proposed algorithm can be used to reduce the number of actual vibration tests required for measuring the mode shapes and modal frequency while it maximizes the objective function. Numerical experiments are conducted to investigate the relationship between the convergence characteristics of the optimization and the target vibration modes. The effectiveness of the optimized geometry changing is verified by comparing the identification error for the uniform geometry changing, the optimized one for the three lower modes of the VGT, and the one found by a classical QR decomposition. Furthermore, the numerical results show that the identification sensitivity with respect to noisy data is reduced by the optimization.  相似文献   

14.
本文提出一种主要由空气弹簧和永磁体所组成的具有准零刚度特性的非线性隔振器.首先,通过分析空气弹簧和磁体的受力特性,建立隔振器力-位移关系和刚度-位移关系,揭示隔振器静态力学特性,并分析隔振器参数对系统刚度的影响规律.然后,采用谐波平衡法计算隔振器力传递率特性.结果表明,通过在适当范围内调节系统阻尼比或激励幅值,所提出的非线性隔振器在隔振频率范围内优于普通空气弹簧隔振器.最后,通过实验验证隔振器的隔振性能.该研究可为小振幅甚至微振动系统的振动隔离提供新的参考.  相似文献   

15.
In this paper, a new multi-objective uniform-diversity genetic algorithm (MUGA) with a diversity preserving mechanism called the ε-elimination algorithm is used for Pareto optimization of a five-degree of freedom vehicle vibration model considering the five conflicting functions simultaneously. The important conflicting objective functions that have been considered in this work are, namely, seat acceleration, forward tire velocity, rear tire velocity, relative displacement between sprung mass and forward tire and relative displacement between sprung mass and rear tire. Further, different pairs of these objective functions have also been selected for 2-objective optimization processes. The comparison of the obtained results with those in the literature demonstrates the superiority of the results of this work. It is shown that the results of 5-objective optimization include those of 2-objective optimization and, therefore, provide more choices for optimal design of a vehicle vibration model.  相似文献   

16.
为了加强发动机罩壳的静态刚度特性和抑制振动能力,实现罩壳结构的轻量化,引入基于水平集法的拓扑优化技术和多目标理论,完成发动机罩加强筋布局的多目标优化设计。采用折衷规划法构建关于静刚度和一阶固有频率的多目标优化模型,运用水平集法求出罩壳加强筋的最佳分布形式。结果表明,该方法能大大地提高静动态结构性能,最大应力的下降说明罩壳应力集中现象得到有效的改善,缓解罩壳的疲劳现象。此外,基于层次分析法确定权重因子,避免了多目标优化模型构建中的主观能动性。采用平均频率法对动态目标函数的处理,有效地消除了动态优化过程中的收敛性。  相似文献   

17.
In this paper, topology optimization in design of suspensions for high-density magnetic recording systems is studied. With the development of higher data density and the faster data streaming, a hard-disk drive (HDD) is required to move faster with greater positioning accuracy. At this situation, even small mechanical vibration induced by seeking motion may result in error in data reading. According to the operational characteristics of HDD suspension, the present work is focused on the topology design of HDD suspension for the dynamic shock response problem. As a result of this research, several new topological structures of HDD suspension are obtained, which are largely different from previous work, and dynamic response under shock force and stability of passive structure are also improved.  相似文献   

18.
In this paper, topology optimization in design of suspensions for high-density magnetic recording systems is studied. With the development of higher data density and the faster data streaming, a hard-disk drive (HDD) is required to move faster with greater positioning accuracy. At this situation, even small mechanical vibration induced by seeking motion may result in error in data reading. According to the operational characteristics of HDD suspension, the present work is focused on the topology design of HDD suspension for the dynamic shock response problem. As a result of this research, several new topological structures of HDD suspension are obtained, which are largely different from previous work, and dynamic response under shock force and stability of passive structure are also improved.  相似文献   

19.
This research proposes a robust optimal design methodology of the FDBs in a HDD to reduce RRO and NRRO. The critical mass, which determines the dynamic behavior of rotor-bearing system, was selected as an objective function, and the constraint equations were the friction torque of the FDBs, and the stiffness and damping coefficients related with under-damped vibration modes. Ten major design variables of the FDBs were chosen in this optimization problem. The steady-state whirl radius and the shock response at half-speed whirl of the rotating rigid spindle-bearing system were evaluated as RRO and NRRO, respectively. RRO and NRRO of the optimal design were compared with those of conventional one, and it showed that the proposed method could effectively reduce RRO and NRRO.  相似文献   

20.
以带有双层隔振装置的舰船模型为对象,利用MSC Nastran的有限元分析方法以及试验手段,对其隔振性能进行研究.将船体与双层隔振装置作为一个系统,建立三维有限元振动分析模型;以降低船体结构振动能量为目标,对发动机激励作用下的双层隔振装置与船体的振动特性进行分析;通过有限元分析方法和试验两方面的研究与对比,为舰船的减振降噪的初期概念设计提供快速预报方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号