首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear analytical transient response model that is suitable for BiCMOS driver circuits operating under the Kirk and Van der Ziel effect is presented. The model accounts for both base vertical push-out and lateral stretching phenomena where the forward transit time τ f has a square law dependence on the collector current. Based on the new transient model, a closed-form BiCMOS delay expression is derived that shows excellent agreement with measured gate delay from a 0.8-μm BiCMOS technology. The comparison is made for a wide range of circuit parameters. The delay model can be used to develop timing analyzers, timing simulators, and circuit optimization tools for ULSI circuit design. As an application of the delay model, a circuit design algorithm is derived to optimize the speed-area performance of the BiCMOS buffers  相似文献   

2.
A comprehensive view of an optimization strategy for BiCMOS gates is described. A simple gate delay model is proposed. BiCMOS gate delay, when optimized, is found to be expressed as A+B√F, where F is fanout and A and B are coefficients. Since the coefficients can be extracted by SPICE simulation, the delay prediction can be precise, while keeping the delay formula simple enough for circuit designers to derive useful expressions. A procedure for optimizing BiCMOS gates is studied. BiCMOS gate delay can be calculated quickly and optimized efficiently just by looking up a design table which is obtained from SPICE simulations. The procedure for making the design table is technology-independent. Once obtained, the design table can be applied to any design with the same device technology. A sizing strategy of cascaded BiCMOS buffers is derived from the simple delay model. In a 0.8 μm, 9 GHz, BiCMOS process, a BiCMOS-BiCMOS cascaded buffer is optimized when the scale-up factor between two consecutive stages is e 2.3(≈10.0). A BiCMOS-CMOS cascaded buffer becomes the fastest when the scale-up factor, e1.6(≈5.0), is employed. The optimization procedure and the sizing strategy can be used for several variants of the basic BiCMOS gate, because the delay model is based on basic circuit models for the variants  相似文献   

3.
A simple BiCMOS configuration employing the source-well tie PMOS/n-p-n pull-down combination is proposed for low-voltage, high-performance operations. The improved BiCMOS gate delay time over that of the NMOS/n-p-n (conventional) BiCMOS gate is confirmed by means of inverter simulations and measured ring oscillator data. The source-well tie PMOS/n-p-n BiCMOS gate outperforms its conventional BiCMOS counterpart in the low-voltage supply range, at both high and low temperatures. A critical speed path from the 68030 internal circuit is used as a benchmark for the proposed BiCMOS design technique. The measured propagation delay of the BiCMOS speed path is faster than its CMOS counterpart down to 2.3 V supply voltage at -10°C and sub-2 V at 110°C  相似文献   

4.
This work presents strategies to insert buffers in a circuit, combined with gate sizing, to achieve better power delay and area-delay tradeoffs. The purpose of this work is to examine how combining a sizing algorithm with buffer insertion will help us achieve better area delay or power-delay tradeoffs, and to determine where and when to insert buffers in a circuit, The delay model incorporates placement-based information and the effect of input slew rates on gate delays. The results obtained by using the new method are significantly better than the results given by merely using a TILOS-like gate sizing algorithm alone, as is illustrated by several area delay tradeoff curves shown in this paper  相似文献   

5.
A BiCMOS logic circuit applicable to sub-2-V digital circuits has been developed. A transiently saturated full-swing BiCMOS (TS-FS-BiCMOS) logic circuit operates twice as fast as CMOS at 1.5-V supply. A newly developed transient-saturation technique, with which bipolar transistors saturate only during switching periods, is the key to sub-2-V operation because a high-speed full-swing operation is achieved to remove the voltage loss due to the base-emitter turn-on voltage. Both small load dependence and small fan-in dependence of gate delay time are attained with this technique. A two-input gate fabricated with 0.3-μm BiCMOS technology verifies the performance advantage of TS-FS-BiCMOS over other BiCMOS circuits and CMOS at sub 2-V supply  相似文献   

6.
A BiCMOS logic circuit with very small input capacitance has been developed, which operates at low supply voltages. A High-beta BiCMOS (Hβ-BiCMOS) gate circuit which fully utilizes the bipolar transistor features achieves 10 times the speed of a CMOS gate circuit with the same input capacitance and operating at 3.3 V supply voltage. In order to lower the minimum supply voltage of Hβ-BiCMOS, a BiCMOS circuit configuration using a charge pump to pull up the output high level of the BiCMOS gate circuit is proposed. By introducing a BiCMOS charge pump, Hβ-BiCMOS achieves very high speed operation at sub-2.0 V supply voltage. It has also been demonstrated that only a very small number of charge pump circuits are required to drive a large number of Hβ-BiCMOS gate circuits  相似文献   

7.
A new sampling gate circuit, with dual outputs functioning alternately in the track and hold modes, is integrated in an open-loop sample-and-hold circuit architecture achieving greater than 450-MHz small-signal input bandwidth and 100-MHz maximum sample rate. The sampling gate also incorporates slew enhancement techniques to achieve (+430 V/μs, -510 V/μs) slew rate and features a `built-in' buffer to maintain constant input impedance for both the track and hold modes, simplifying design of the front-end input buffer. Special on-chip clock generation circuits are used to minimize sampled pedestal (+4 mV). Power dissipation is less than 300 mW, including output driver. Measured harmonics are 58 dB down for a 2 Vp-p 20-MHz sine wave sampled at 100 MHz  相似文献   

8.
This paper describes fringing and coupling interconnect capacitance models which include the nonlinear second-order effects of field interactions among multilevel parasitic interconnects for accurate circuit simulations. They are fitted well with numerical solutions by using a Poisson equation solver. A reliable parasitic distributed resistance-inductance-capacitance (RLC) extraction method is identified by using the solver with the bounded local three-dimensional (3-D) numerical analysis to reduce excessive central processing unit (CPU) time compared to full 3-D numerical simulation. We investigate the impact of input slew variations on the traversal clock delay within the slow ramp region of the driver gate as well as in the extracted parasitic interconnect networks. Input slew is found to be a dominant factor affecting clock delay sensitivity. In addition, we use indirect on-chip electron beam probing to confirm that the simulated clock delays are in reasonable agreement with the measured delays  相似文献   

9.
We have developed a half-micron super self-aligned BiCMOS technology for high speed application. A new SIlicon Fillet self-aligned conTact (SIFT) process is integrated in this BiCMOS technology enabling high speed performances for both CMOS and ECL bipolar circuits. In this paper, we describe the process design, device characteristics and circuit performance of this BiCMOS technology. The minimum CMOS gate delay is 38 ps on 0.5 μm gate and 50 ps on 0.6 μm gate ring oscillators at 5 V. Bipolar ECL gate delay is 24 ps on 0.6 μm emitter ring oscillators with collector current density of 40 kA/cm2. A single phase decision circuit operating error free over 8 Gb/s and a static frequency divider operating at 13.5 GHz is demonstrated in our BiCMOS technology  相似文献   

10.
A 64-bit carry look ahead adder using pass transistor BiCMOS gates   总被引:1,自引:0,他引:1  
This paper describes a 64-bit two-stage carry look ahead adder utilizing pass transistor BiCMOS gate. The new pass transistor BiCMOS gate has a smaller intrinsic delay time than conventional BiCMOS gates. Furthermore, this gate has a rail-to-rail output voltage. Therefore the next gate does not have a large degradation of its driving capability. The exclusive OR and NOR gate using the pass transistor BiCMOS gate shows a speed advantage over CMOS gates under a wide variance in load capacitance. The pass transistor BiCMOS gates were applied to full adders, carry path circuits, and carry select circuits. In consequence, a 64-bit two-stage carry look ahead adder was fabricated using a 0.5 μm BiCMOS process with single polysilicon and double-metal interconnections. A critical path delay time of 3.5 ns was observed at a supply voltage of 3.3 V. This is 25% better than the result of the adder circuit using CMOS technology. Even at the supply voltage of 2.0 V, this adder is faster than the CMOS adder  相似文献   

11.
A detailed transient analysis of the MOSFET-BJT combination prevalent in digital BiCMOS gates is presented. The analysis accounts for high-level injection leading to BJT β roll-off, base pushout leading to BJT fT roll-off, short-channel behavior of the MOS drain current, and parasitic capacitances at the base and output. Based on the transient analysis, a piecewise delay expression is derived that shows excellent agreement with measured gate delay and with SPICE simulated delay. The comparisons are made for a wide range of circuit parameters in the gate, namely, MOSFET/BJT size, load capacitance, and supply voltage for both 1- and 0.6-μm BiCMOS technologies. The model is used to optimally size gates, and to determine circuit and device design guidelines to minimize the delay degradation at reduced supply  相似文献   

12.
A quasi-complementary BiCMOS gate for low-voltage supply is applied to a 3.3V RISC data path. For a parallel RISC processor, the major issues are the construction of arithmetic modules in a small number of transistors and the shortening of the cycle time as well as the delay time. The feedbacked massive-input logic (FML) concept is proposed to meet these requirements. It reduces the number of transistors and the power within the framework of fully static logic 3-4 times. A low-voltage BiCMOS D-flip-flop is also conceived to allow the single-phase clocking scheme, which is favorable for high-frequency operation of RISCs. To demonstrate these circuit techniques, a 32-b ALU is designed and fabricated using 0.3-μm BiCMOS to demonstrate 1.6 times performance leverage over CMOS at 3.3 V  相似文献   

13.
A high-frequency fully differential BiCMOS operational amplifier design for use in switched-capacitor circuits is presented. The operational amplifier is integrated in a 3.0-GHz, 2-μm BiCMOS process with an active die area of 1.0 mm×1.2 mm. This BiCMOS op amp offers an infinite input resistance, a DC gain of 100 dB, a unity-gain frequency of 90 MHz with 45° phase margin, and a slew rate of 150 V/μs. The differential output range is 12 V. The circuit is operated from a ±5-V power supply and dissipates 125 mW. The op amp is unity-gain stable with 7 pF of capacitive loading at each output. The op amp is a two-stage, pole-split frequency compensated design that uses a PMOS input stage for infinite input resistance and an n-p-n bipolar second stage for high gain and high bandwidth. The frequency compensation network serves both the differential- and common-mode amplifiers so the differential- and common-mode amplifier dynamics are similar. A dynamic switched-capacitor common-mode feedback scheme is used to set the output common-mode level of the first and second stages  相似文献   

14.
A new delay model and optimization method is proposed for a low-power BiCMOS driver. A transient overdrive, base directly-tied complementary BiCMOS logic circuit operates faster than conventional BiCMOS and CMOS circuits for supply voltage down to 1.5 V by using a speed-power-area optimization approach. An analytical delay expression is derived for the first time for a full-swing BiCMOS circuit with short-channel effects. The circuit is simulated with a HSPICE model using 0.8-μm BiCMOS technology with a 6-GHz n-p-n and a 1-GHz p-n-p transistor. The simulation results have verified the analytical results and demonstrated that the circuit can work up to 200 MHz operating frequency for a load capacitance of 1 pF at 1.5 V of supply voltage  相似文献   

15.
This paper presents the design of a continuous time voltage comparator with low propagation delay dispersion. The comparator is intended to be used as a building block for a level-crossing AD converter: a type of AD converter where the sampling moments are triggered when an input signal crosses predetermined threshold levels. This type of system sets very high demands on the time measurement and the comparator to achieve the desired performance. The comparator design is based on several techniques to minimize the comparator propagation delay dispersion. The comparator has been implemented in a 0.35 μm BiCMOS process. Measured results show good agreement with simulations. The slew rate related propagation delay dispersion is measured to 90 ps for an input frequency range from 3 to 10 MHz and amplitudes from 200 mV to 1.65 V. The comparator static power consumption is 9 mW.  相似文献   

16.
This paper presents novel low-voltage dynamic BiCMOS logic gates and an improved carry look-ahead (CLA) circuit with carry skip using these new dynamic BiCMOS topologies. The well-known “MOS clock feedthrough effect” is used to achieve full swing with substantially reduced low-to-high evaluation delay in the logic gates, thus, resulting in reduced carry propagation/bypass delay in the cascaded CLA array. Simulations at clocking frequency of 100 MHz, using 2-μm BiCMOS process parameters and supply voltage in the range of 2-4 V displays lower gate delay and lower power dissipation compared to other recent dynamic BiCMOS logic topologies. The circuit has no dc power dissipation, race, or charge redistribution problems. An 8-b CLA with 5-b carry skip was achieved in 2.917 ns. This speed is significantly higher than other recent dynamic BiCMOS CLA designs. In addition, the new CLA circuit is more compact compared to previous dynamic BiCMOS CLA designs. A tiny chip was fabricated using the MOSIS Orbit Analog 2-μm V-well CMOS process for the experimental verification of the new low-voltage dynamic BiCMOS topologies  相似文献   

17.
Static timing analysis is a key step in the physical design optimization of VLSI designs. The lumped capacitance model for gate delay and the Elmore model for wire delay have been shown to be inadequate for wire-dominated designs. Using the effective capacitance model for the gate delay calculation and model-order reduction techniques for wire delay calculation is prohibitively expensive. In this paper, we present sufficiently accurate and highly efficient filtering algorithms for interconnect timing as well as gate timing analysis. The key idea is to partition the circuit into low and high complexity circuits, whereby low complexity circuits are handled with efficient algorithms such as total capacitance algorithm for gate delay and the Elmore metric for wire delay and high complexity circuits are handled with sign-off algorithms. Experimental results on microprocessor designs show accuracies that are quite comparable with sign-off delay calculators with more than of 65% reduction in the computation times  相似文献   

18.
A new analytical delay model for high-speed CML circuits is presented. It is applicable to high-speed/low-voltage-swing silicon and HBT CML circuits operating at medium or high current densities. The model is based on bipolar SPICE parameters file, and can be used to estimate the propagation delay time of CML circuits under different operating conditions. The detailed transient analysis accounts for delay components due to each element in the complete SPICE bipolar transistor model. The comparison to SPICE circuit simulation results show excellent agreement for a wide range of state-of-the-art technologies and circuit parameters. The new model predicts the delay time with less than 5% error in most cases. The influence of the finite slopes (slewing rate) of the input signal and the device dimensions is also investigated. The delay model determined the optimum current i0 (or load resistor RL) for a transistor of a certain emitter area when driven by a source of a voltage swing (ΔV) and slew time (tr ). At a specified power dissipation, the delay model is used to optimally size the transistor emitter area for maximum switching speed. The model provides circuit and device guidelines to minimize the propagation delay time and improve the performance of high-speed CML circuits  相似文献   

19.
Debugging and speed-binning a fabricated design requires a pattern-dependent timing model to generate patterns, which static timing analysis is incapable of providing. To address these issues, we propose a timing analysis tool that integrates a pattern-dependent delay model into its analysis. Our approach solves for the delay by using the concept of circuit unrolling and formulation of timing questions as decision problems for input into a satisfiability (SAT) solver. We generate a critical path and input vectors that stimulate it, taking into account pattern-dependent effects such as data-dependent gate delays and multiple-inputs switching. The effectiveness and validity of the proposed methodology is illustrated through experiments on various benchmark circuits and comparisons directly with SPICE.  相似文献   

20.
A picosecond-accuracy digital vernier-based single-chip time interval counter (TIC) LSI applicable to timing calibration in state-of-the-art high-speed LSI test systems is described. Jitter performance is improved to three times higher than in conventional circuitry by using a new skew detection circuit that is insensitive to the jitter caused by metastable transitions in flip-flops. All the hardware except the signal sources has been integrated on a Si bipolar 2.5 K gate array LSI by developing fully digitally processes heat-signal and trigger control circuits. The chip is mounted on a dedicated ceramic package employing coplanar lines with a 3-GHz bandwidth. Overall performance achieves 2.3-ps standard deviation, ±3-ps linearity, zero-skew offset of ±2.7 ps, and an equivalent input slew time of 33.6 ps/V at input clock rates up to 700 MHz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号