首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(11):1145-1159
The influence of machine function (tree felling and processing, and machine movement over the terrain) on operator exposure to whole-body vibration in a cut-to-length (CTL) timber harvester was evaluated. Vibrations were measured on the seat and the cabin chassis in three orthogonal (x, y, z) axes for the tree felling and processing, and during motion on a test track. It was found that the level of vibration transmitted to the operator during felling and processing was mainly affected by the tree size (diameter). For tree diameter at breast height (dbh) range of 0.25 – 0.35 m that was investigated, the vertical (z-axis) vibration component during processing increased by up to 300%, and increased by 50% during felling. However, the associated vibration levels were not sufficient to pose any serious health risks to the operator for an exposure limit of 8 h. Vibration at the operator seat and cabin chassis was predominant in the lateral (y-axis) and vertical (z-axis) respectively, during vehicle motion over the standard test track. Vibration peaks of approximately 0.20 and 0.17 ms?2 occurred at 5 and 3.2 Hz respectively.  相似文献   

2.
The influence of tyre inflation pressure on whole-body vibrations transmitted to the operator during the movement of a cut-to-length timber harvester was evaluated. Vibration measurements were taken in three orthogonal (x, y, z) axes at tyre pressure settings of 138, 345 and 414 kPa. Vibration was predominant in the vertical (z) direction with the peak rms acceleration value for the operator seat (0.281 ms(-2)) occurring at approximately 3.2 Hz.The corresponding peak value for the operator cabin chassis was 0.425 m s(-2) at 4 Hz.At 414 kPa, there was potential health risk on the operator for exposures above 8h duration. The vibration total values recorded for the operator seat at the maximum tyre inflation pressure setting were classed as "fairly uncomfortable" (ISO standard 2631-1), and vertical seat vibration transmissibility was highest between 4 and 8 Hz at the 345 kPa tyre pressure setting. The recorded values of WBV were significantly reduced by a reduction in tyre inflation pressure which may therefore be used to moderate the magnitude of WBV on wheeled timber harvesters.  相似文献   

3.
《Ergonomics》2012,55(9):1513-1531
A series of experiments has investigated the transmission of roll and pitch seat vibration to the heads of seated subjects. Head motion was measured in all six axes using a light-weight bite-bar while seated subjects were exposed to random motion at frequencies of up to 5 Hz at 1.0 rad.s ?2 r.m.s. Subjects sat on a rigid flat seat in two body postures: ‘back-on’ (back in contact with backrest) and ‘back-off’ (no backrest contact). The influence of the position of the centre of rotation was also investigated.

Motion at the head occurred mostly in the lateral, roll and yaw axes during exposure to roll seat vibration and in the fore-and-aft, vertical and pitch axes during exposure to pitch seat vibration. A reduction in the magnitude of head motion occurred when the subjects sat in a 'back-off' posture compared with a 'back-on' posture. Varying the position of the centre of rotation along the lateral axis during roll seat vibration affected vertical and pitch head motion: least head motion occurred when the centre of rotation was in line with the subject's mid-sagittal plane. Varying the position of the centre of rotation along the vertical axis during roll seat vibration affected head motion in the mid-coronal plane: roll head motion decreased as the position of the centre of rotation was raised from below the seat surface to above the seat surface. Varying the centre of rotation (along the fore-and-aft and vertical axes) during pitch seat vibration altered head motion in the mid-sagittal plane. Head motion increased with increasing distance of the centre of rotation in front or behind the subject's ischial tuberosities and increased as the seat was raised from below the centre of rotation to above the centre of rotation.  相似文献   

4.
The study was undertaken to determine the technical factors responsible for the generation of vibration and shocks in overhead cranes and therefore responsible for complaints by the workers. Vibration measurements were made on the floor and on the seat of the cabin on 21 cranes. Vibration levels were correlated with the characteristics of the cranes. The study showed that vibration accelerations increased with the span of the crane and were very dependent upon the state of the runway. The type of speed regulation and the position of the cabin also play a significant role. The suspension systems of the cabin and the seat are clearly inadequate to give significant reduction of the vibration. In several cases, it was even shown to amplify the vibration in the most critical frequency range. These results should be taken into account by designers as well as maintenance services in order to prevent the development of vibration at the source.  相似文献   

5.
Bus and seat design may be important for the drivers' whole-body vibration (WBV). WBV exposures in buses during actual operation were assessed. WBV attenuation performance between an air-suspension seat and a static pedestal seat in low-floor buses was compared; there were no differences in WBV attenuation between the seats. Air-suspension seat performance in a high-floor and low-floor bus was compared. Relative to the pedestal seat with its relatively static, limited travel seat suspension, the air-suspension seat with its dynamic, longer travel suspension provided little additional benefit. Relative to the measurement collected at the bus floor, the air-suspension seat amplified the WBV exposures in the high-floor bus. All WBV exposures were below European Union (EU) daily exposure action values. The EU Vibration Directive only allows the predominant axis of vibration exposure to be evaluated but a tri-axial vector sum exposure may be more representative of the actual health risks.  相似文献   

6.
Gerard MJ  Martin BJ 《Ergonomics》1999,42(2):314-326
Movement precision and performance time were evaluated through a visuo-manual tracking task performed before and after 10-min hand vibration exposure. Constant displacement amplitude vibration of 0.2 and 0.3 mm peak to peak at 90, 150, 300 Hz were applied to the hand z-axis by a vertical handle. During exposure a grip force of 5% MVC was exerted for 5 s and then relaxed for 25 s while maintaining fingers-handle contact. The tracking task consisted in moving a ring (phi = 9 mm) attached to a thin rod held between the index finger and thumb along a zig-zagged wire (phi = 3.7 mm). Alterations of tracking errors (ring-wire contact) and tracking time were analysed as a function of the vibration parameters. The tasks were performed by ten healthy participants. Vibration induced a significant increase in tracking errors (ring-wire contact) and a significant decrease in tracking time. These impairments decayed with time after vibration exposure. The recovery period was > 5 min but < 10 min with the exception of 90 Hz vibration, for which recovery could be > 10 min. The number of tracking errors was neither influenced by vibration frequency nor by amplitude. The tracking time decreased as frequency increased and recovery was related to the displacement amplitude. The subjective rating of the performance on a visual analogue scale indicated that the subjects tended to perceive the task as being easier after vibration exposure. Vibration applied to the non-dominant hand while the participant performed the tracking task had no effect. These results show that vibration similar to hand-tool vibration affects precision and velocity control of visually guided hand movements. Furthermore, these performance decrements were not consciously perceived.  相似文献   

7.
The aim of this study is to investigate and compare vibration and shock measurements of maintenance-of-way vehicles used in the railroad industry for track maintenance and construction. Following international standards (i.e., ISO 2631-1: 1997) and professional guidelines the frequency weighted root-mean-square (r.m.s.) acceleration for each measurement axis, the vector sum, the seat effective amplitude transmissibility (SEAT), the crest factor (CF), the maximum transient vibration value (MTVV), the vibration dose value (VDV), the ratio and the newly proposed shock risk estimation factor ‘R’ for spinal injury according to ISO 2631-5:2004 were measured and calculated for seven different maintenance-of-way vehicles during revenue service. Furthermore, a proposed alternative spinal injury prediction method, the VibRisk model, which incorporates different typical driver postures and operator physical characteristics was included for comparison with the ISO 2631-5 risk prediction. The results of the vibration exposure measurements depended on vehicle type, track/surface conditions and seat properties, with the tamper and bulldozer showing the highest r.m.s. vibration values. The vector sum (av) results ranged from 0.37 to 0.99 (m/s2). Five of seven track maintenance vehicles would exceed the current Whole-body Vibration ACGIH-TLV® guideline for an 8 h exposure duration in the vertical axis recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). The measured CF, MTVV/aw and VDV/(aw·T1/4) ratios were at or above the critical ratios in the majority of measurements given by the ISO 2631-1 (1997) and American industry guidelines by the American Conference of Governmental Industrial Hygienists (ACGIH-TLV). Comparing both prediction models for vibration shock risk for parts of the lumbar spine, different risk predictions and inconsistencies were found. The VibRisk model generally suggests different and higher risk of vertebral endplate failure for individual lumbar levels, whereas the ISO 2631-5 model indicated generally lower risks and did not differentiate between different disk levels and driver posture. Epidemiological studies validating the different shock risk models are lacking. Work modifications and adequate suspension seats would be beneficial for prevention of harmful exposure to vibration and shocks.  相似文献   

8.
Objective measurement of the start-motion quality of a forklift truck   总被引:1,自引:0,他引:1  
An objective index is developed for the estimation of ride quality during a forklift truck start. After consultation with test drivers, start-motion quality is defined and three governing parameters selected: engagement shock in the driving direction, vertical vibration, and pitch vibration. Subjective evaluation of the starting motion and objective measurements of vehicle vibration were performed on five forklift trucks with various load capacities. The vibration measured at the driver's seat was changed into a perceptual amount by using the frequency weighting curves and the fourth power dose method suggested in ISO 2631-1 (Mechanical Vibration and Shock-evaluation of Human Exposure to Whole-body Vibration--Part 1: General Requirements. International Organization for Standardization). Regression between the perceptual vibrations, expressed as a vibration dose value, and the subjective rating scores yielded an index equation in the form of Steven's psychophysical power law: psi = 1.912phi(-0.601), where psi is the sensation magnitude of start-motion quality and phi is the stimulus magnitude of the vibration dose value.  相似文献   

9.
The seats may significantly reduce the exposures levels transmitted to the driver, but the European Directive 2002/44/EC (2002) requires only tests on the damping seat capacity along the vertical direction, whereas nothing is required for the longitudinal and transversal directions.Field tests were carried out using a 93 kW tractor to verify the vibrational comfort values given by seat with pneumatic suspension. The tests were executed with the tractor running on different surfaces, at two different forward speed and tire pressures and with different tractor masses. Three repetition were carried out for each configuration. Accelerations were always measured on both the seat and the cabin platform and the calculations were done using the ISO 2631 standard suggestions. The vibration total values and the acceleration transmissibility along the 3 perpendicular axes were calculated and analysed.Despite different boundary conditions (surface, tire pressure, forward speed and tractor mass distribution), along the Z axis the transmissibility was constantly around 0.7, to confirm that the seat worked well to damp the vertical exposures. Different were the situations for the X and the Y axes. Excluding the asphalt, on the other crossed surfaces high transmissibility values were observed (never less than 1), especially along the X axis.Relevance to industry. This paper describes the vibration transmissibility of an agricultural tractor seat. Tests were carried out with the tractor running on different surfaces and with different configurations. The seat transmissibility along the three orthogonal directions was acquired.Results suggest that the tractor manufacturer should consider, during the machine design, also the rolling and pitching movements, because the seat accelerations along the X and Y axes are influenced by them. The seat manufacturer could reduce the rolling and pitching effects using specific suspension systems along the horizontal and lateral directions.  相似文献   

10.
《Ergonomics》2012,55(1):35-43
Vibration is considered to include the oscillatory motion of travelling vehicles. The predominant, linear sinusoidal component of this motion is usually in the vertical direction and of 0-50 e.p.a. in frequency. A human being or animal subjected to vibration may exhibit a variety of symptoms and anatomical damage. These effects may be diminished by shielding the operator from the vibration of the vehicle. Excessive shielding is undesirable in that it increases the relative motion of the operator with respect to the vehicle and hence may be expected to cause decrement of performance. Some of the physical theory necessary for the design of vibration shielding equipment is given. Methods for human vibration protection are described and reference is made to a currently available device  相似文献   

11.
Whole body vibration (WBV) was measured on eight surface haulage trucks in three size classes (35, 100, 150 ton haul capacities). Vibration was measured at the seat/operator interface in accordance with the ISO 2631-1 standard during 1 h of normal operation. Highest acceleration readings were observed in the z-axis (vertical). Estimated equivalent daily exposure values in the range of 0.44–0.82 ms?2 were observed using the frequency-weighted r.m.s method and 8.7–16.4 ms?1.75 using the vibration dose value method. Assessment was carried out using ISO 2631-1 and 2631-5. Operators of surface haulage trucks are regularly exposed to WBV levels that exceed safety limits as dictated by the ISO 2631-1 standard. However, according to ISO 2631-5 the probability of an adverse health effect remains low. These findings confirm an apparent disagreement between the two analysis methods.  相似文献   

12.
Several studies have shown a relationship between low-back problems and exposure to seated whole-body vibration. The amount of vibration transmitted to the operator is influenced by the posture of the subject in the vehicle. The aim of this study was to determine whether a truck seat with a gas spring in its suspension is superior to the standard spring seat in slowing the onset of muscle fatigue and reducing the level of discomfort experienced during road vibrations while maintaining typical driving postures. The experiment used a 2 x 3 (2 seats x 3 postures) repeated measures design. It was conducted on six males free from low-back pain. Subject comfort was rated before and directly after exposure to typical vibrations. Muscle fatigue using centre frequency was determined during vibration exposure, and the magnitude and phase of acceleration transfer were calculated from the base plate to the seat pan and from the seat pan to the bite bar. None of comfort, fatigue rate or fatigue average were affected by seat type or seat suspension design in the short term, 10 min vibration exposure. Fatigue and comfort measures could continue to be used to detect postural defects, but the more sensitive measures of seat/driver interactions remain mechanical ones using motion-measuring techniques such as accelerometry and correcting for the heavily damped nature of the system. Until more sophisticated manikins are available the characteristics of vibration-attenuating seats should be confirmed using live humans.  相似文献   

13.
《Ergonomics》2012,55(10):2091-2106
A field study was conducted to investigate how the discomfort caused by the vibration of an agricultural tractor can be predicted from objective measurements of the vibration in the cabin. Eleven professional drivers judged the vibration discomfort produced by four different tractors on sixteen different test runs. At the same time, for all the tests, the multi-axis vibration in the cabin was measured on the floor, the seat pan and the seat backrest. For each of the 704 tests carried out, the discomfort caused by the vibration was predicted from the measured vibration in the cabin using a total of twenty different analysis procedures. The relative merits of the different prediction procedures were investigated by comparing, on an individual basis for each driver/tractor combination, the statistical significance of the correlations between the subjective judgements and the predicted values. There was considerable variability in the drivers' subjective responses, but it was concluded that, overall, the best procedure for predicting the vibration discomfort in an agricultural tractor is that recommended by ISO 2631 (International Organization for Standardization 1978), using the frequency weighted rms values of the vibration (0·5–20?Hz) measured on the seat pan in the three orthogonal directions, and taking the square-root-of-the-sum-of-the-squares of the values in order to combine the directions as recommended in Amendment 1 to ISO 2631 (International Organization for Standardization 1982).  相似文献   

14.
India is the largest manufacturer of tractors in the world. They are used for primary and secondary tillage operations and as a means of transportation. Vibration in tractor driving can cause deafness and disorders of the spinal column and stomach. The effect of implements on tractor ride is not well understood in India. The present study was undertaken to quantify ride vibration of a low horsepower tractor-implement system. Tractor ride vibration levels have been measured at the person-seat interface along three mutually perpendicular axes, longitudinal, lateral and vertical, under different operating conditions. It was observed that the acceleration levels increased as forward speed of travel increased under most of the operating conditions. There was no conclusive difference in measured acceleration levels on a tar-macadam road and a farm road during transport mode. The measured ride vibration levels under different operating conditions were evaluated as per ISO 2631/1 (1985), Geneva, and BS 6841 (1987), London, standards. On the basis of this study, it is concluded that the exposure time for the tractor operator should not exceed 2.5 h during ploughing and harrowing operations. Increasing exposure time may cause severe discomfort, pain and injury.  相似文献   

15.
The multi-axis vibration transmission characteristics of selected suspension seats were investigated in the laboratory. Subjects were exposed to a flat acceleration spectrum and two low frequency signals extracted from multi-axis acceleration data recorded at the floor of a passenger locomotive. Triaxial accelerations were measured at the floor of the vibration table and at the interfaces between the subject and mounted seat (seat pan and seat back). The transmission ratios between the overall seat pan and seat back accelerations and floor accelerations provided an effective tool for evaluating the effects of measurement site, vibration direction, and posture among the selected seating systems. The results showed that the system transfer matrix, estimated using a multiple-input/single-output model, would be less than ideal for predicting low frequency operational seat vibration when using suspension seats. The Seat Effective Amplitude Transmissibility (SEAT), estimated for the tested locomotive seats, was used to predict the weighted seat pan accelerations and Vibration Total Values for assessing a 1-h operational exposure in accordance with ISO 2631-1: 1997.

Relevance to industry

Multi-axis SEAT values can be estimated for seating systems tested in the laboratory using representative operational exposures. These values can be applied to monitored vehicle floor accelerations to target potentially harmful vibration in accordance with ISO 2631-1: 1997, assuming the operational exposures have similar frequency and magnitude characteristics. The transmission at the seat back should be considered when substantial low frequency multi-axis vibration is present.  相似文献   


16.
Makhsous M  Hendrix R  Crowther Z  Nam E  Lin F 《Ergonomics》2005,48(9):1183-1199
A new car seat design, which allows the back part of the seat (BPS) to lower down while a protruded cushion supports the lumbar spine, was quantitatively tested to determine its effectiveness and potentials in reducing whole-body vibration (WBV) and musculoskeletal disorders in automobile drivers. Nine subjects were tested to drive with the seat in: 1) the conventional seating arrangement (Normal posture); and 2) the new seating design (without BPS (WO-BPS) posture). By reducing contact between the seat and the ischial tuberosities (ITs), the new seating design reduced both contact pressure and amplitude of vibrations transmitted through the body. Root-mean-squared values for acceleration along the z-axis at the lumbar spine and ITs significantly decreased 31.6% (p < 0.01) and 19.8% (p < 0.05), respectively, by using the WO-BPS posture. At the same time, vibration dose values significantly decreased along the z-axis of the lumbar spine and ITs by 43.0% (p < 0.05) and 34.5% (p < 0.01). This reduction in WBV allows more sustained driving than permitted by conventional seating devices, by several hours, before sustaining unacceptable WBV levels. Such seating devices, implemented in large trucks and other high-vibration vehicles, may reduce the risk of WBV-related musculoskeletal disorders among drivers.  相似文献   

17.
The present study assumed that whole-body vibration, transmitted through the seat, impairs spatial retinal resolution and oculomotor alignment parallel to the vibration axis. More specifically, that the decrement increases gradually from single-axis lateral via single-axis vertical and dual-axis linear to dual-axis circular motion. Twenty participants (19-26 years of age) with good vision volunteered for the experiment where in three sessions one of the following three conditions, contrast threshold, nonius bias or fixation disparity, for vertically and horizontally oriented test patterns was determined during five experimental conditions. The latter comprised a control (a(z) = a(y) = 0) and four conditions where 5-Hz sinusoidal motion of 1.2 ms(-2) rms were applied separately, either in the vertical or in the lateral direction, or simultaneously in both directions, once without and once with a phase shift of 90 degrees, thus causing dual-axis linear or circular motion. Contrast thresholds for horizontal gratings and the variability of vertical fixation disparity increased significantly whenever the participants were exposed to vertical motion (alone or combined with lateral motion). These effects may result in an increased difficulty in properly recognizing characters and graphic patterns containing horizontal lines and in the development of asthenopic complaints.  相似文献   

18.
Basri B  Griffin MJ 《Ergonomics》2012,55(8):909-922
This study determined how backrest inclination and the frequency and magnitude of vertical seat vibration influence vibration discomfort. Subjects experienced vertical seat vibration at frequencies in the range 2.5-25 Hz at vibration magnitudes in the range 0.016-2.0 ms(-2) r.m.s. Equivalent comfort contours were determined with five backrest conditions: no backrest, and with a stationary backrest inclined at 0° (upright), 30°, 60° and 90°. Within all conditions, the frequency of greatest sensitivity to acceleration decreased with increasing vibration magnitude. Compared to an upright backrest, around the main resonance of the body, the vibration magnitudes required to cause similar discomfort were 100% greater with 60° and 90° backrest inclinations and 50% greater with a 30° backrest inclination. It is concluded that no single frequency weighting provides an accurate prediction of the discomfort caused by vertical seat vibration at all magnitudes and with all backrest conditions. PRACTITIONER SUMMARY: Vertical seat vibration is a main cause of vibration discomfort for drivers and passengers of road vehicles. A frequency weighting has been standardised for the evaluation of vertical seat vibration when sitting upright but it was not known whether this weighting is suitable for the reclined sitting postures often adopted during travel.  相似文献   

19.
《Ergonomics》2012,55(4):347-355
The effects of vertical and horizontal mechanical vibrations up to 100 cycles per second on the human being were examined by physical and physiological methods. Resonance phenomena are described. A strain scale is given for vertical and horizontal vibration excitation. Special examinations of the movement of the head show elliptic vibrations in spite of linear excitation. Vibration measurements in a rail-motorcar provide an example for typical resonance phenomena of the mechanical system formed by a ‘ man sitting on a seat’.  相似文献   

20.
Biodynamic models representing distributed human-seat interactions can assist seat design. This study sought to develop a finite element (FE) model representing the soft tissues of the body supported by seating and the vertical in-line apparent mass and the fore-and-aft cross-axis apparent mass of the seated human body during vertical vibration excitation. The model was developed with rigid parts representing the torso segments, skeletal structures (pelvis and femurs) and deformable parts representing the soft tissues of the buttocks and the thighs. The model had three vibration modes at frequencies less than 15 Hz and provided reasonable vertical in-line apparent mass and fore-and-aft cross-axis apparent mass. The model can be developed to represent dynamic interactions between the body and a seat over a seat surface (e.g. dynamic pressure distributions and variations in seat transmissibility over the seat surface).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号