首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a new method for scheduling of maintenance operations in a manufacturing system using the continuous assessment and prediction of the level of performance degradation of manufacturing equipment, as well as the complex interaction between the production process and maintenance operations. Effects of any maintenance schedule are evaluated through a discrete-event simulation that utilizes predicted probabilities of machine failures in the manufacturing system, where predicted probabilities of failure are assumed to be available either from historical equipment reliability information or based on the newly available predictive algorithms. A Genetic Algorithm based optimization procedure is used to search for the most cost-effective maintenance schedule, considering both production gains and maintenance expenses. The algorithm is implemented in a simulated environment and benchmarked against several traditional maintenance strategies, such as corrective maintenance, scheduled maintenance and condition-based maintenance. In all cases that were studied, application of the newly proposed maintenance scheduling tool resulted in a noticeable increase in the cost-benefits, which indicates that the use of predictive information about equipment performance through the newly proposed maintenance scheduling method could result in significant gains obtained by optimal maintenance scheduling.  相似文献   

2.
Performance of a manufacturing system depends significantly on the shop floor performance. Traditionally, shop floor operational policies concerning maintenance scheduling, quality control and production scheduling have been considered and optimized independently. However, these three aspects of operations planning do have an interaction effect on each other and hence need to be considered jointly for improving the system performance. In this paper, a model is developed for joint optimization of these three aspects in a manufacturing system. First, a model has been developed for integrating maintenance scheduling and process quality control policy decisions. It provided an optimal preventive maintenance interval and control chart parameters that minimize expected cost per unit time. Subsequently, the optimal preventive maintenance interval is integrated with the production schedule in order to determine the optimal batch sequence that will minimize penalty-cost incurred due to schedule delay. An example is presented to illustrate the proposed model. It also compares the system performance employing the proposed integrated approach with that obtained by considering maintenance, quality and production scheduling independently. Substantial economic benefits are seen in the joint optimization.  相似文献   

3.
In general, distributed scheduling problem focuses on simultaneously solving two issues: (i) allocation of jobs to suitable factories and (ii) determination of the corresponding production scheduling in each factory. The objective of this approach is to maximize the system efficiency by finding an optimal planning for a better collaboration among various processes. This makes distributed scheduling problems more complicated than classical production scheduling ones. With the addition of alternative production routing, the problems are even more complicated. Conventionally, machines are usually assumed to be available without interruption during the production scheduling. Maintenance is not considered. However, every machine requires maintenance, and the maintenance policy directly affects the machine's availability. Consequently, it influences the production scheduling. In this connection, maintenance should be considered in distributed scheduling. The objective of this paper is to propose a genetic algorithm with dominant genes (GADG) approach to deal with distributed flexible manufacturing system (FMS) scheduling problems subject to machine maintenance constraint. The optimization performance of the proposed GADG will be compared with other existing approaches, such as simple genetic algorithms to demonstrate its reliability. The significance and benefits of considering maintenance in distributed scheduling will also be demonstrated by simulation runs on a sample problem.  相似文献   

4.
In this paper, we consider a serial production line consisting of \(n\) unreliable machines with \(n-1\) buffers. The objective is to determine the optimal preventive maintenance policy and the optimal buffer allocation that will minimize the total system cost subject to a given system throughput level. We assume that the mean time between failure of all machines will be increased after performing periodic preventive maintenance. An analytical decomposition-type approximation is used to estimate the production line throughput. The optimal design problem is formulated as a combinatorial optimization one where the decision variables are buffer levels and times between preventive maintenance. To solve this problem, the extended great deluge algorithm is proposed. Illustrative numerical examples are presented to illustrate the model.  相似文献   

5.
In this paper, we consider the problem of scheduling a set of M preventive maintenance tasks to be performed on M machines. The machines are assigned to execute production tasks. We aim to minimize the total preventive maintenance cost such that the maintenance tasks have to continuously be run during the schedule horizon. Such a constraint holds when the maintenance resources are not sufficient. We solve the problem by two exact methods and meta-heuristic algorithms. As exact procedures we used linear programming and branch and bound methods. As meta-heuristics, we propose a local search approach as well as a genetic algorithm. Computational experiments are performed on randomly generated instances to show that the proposed methods produce appropriate solutions for the problem. The computational results show that the deviation of the meta-heuristics solutions to the optimal one is very small, which confirms the effectiveness of meta-heuristics as new approaches for solving hard scheduling problems.  相似文献   

6.
This paper presents an algorithm based on Ant Colony Optimization paradigm to solve the joint production and maintenance scheduling problem. This approach is developed to deal with the model previously proposed in [3] for the parallel machine case. This model is formulated according to a bi-objective approach to find trade-off solutions between both objectives of production and maintenance. Reliability models are used to take into account the maintenance aspect. To improve the quality of solutions found in our previous study, an algorithm based on Multi-Objective Ant Colony Optimization (MOACO) approach is developed. The goal is to simultaneously determine the best assignment of production tasks to machines as well as preventive maintenance (PM) periods of the production system, satisfying at best both objectives of production and maintenance. The experimental results show that the proposed method outperforms two well-known Multi-Objective Genetic Algorithms (MOGAs): SPEA 2 and NSGA II.  相似文献   

7.
在近些年的制造环境中,由于市场对多品种、小批量定制产品需求的增加,生产制造更加深入地向着柔性方向发展.如何利用现有资源,提高生产效率,实时地对系统性能进行评估与预测,并对基于小批量生产的实时调度进行优化改进,在分布式柔性生产系统中具有重要的研究意义.因此,基于退化机器模型的多批次串行生产线的性能进行分析,并对分布式生产系统进行任务调度及预测性维护.具体地说,对于具有退化机器模型及有限容量缓冲区的生产系统,首先采用马尔科夫分析方法建立数学模型;随后,提出精确方法来计算此生产系统模型实时的性能指标,并针对该模型下的调度问题,设计最优完成时间指标优化算法;此外,提出基于退化机器模型的预测性维护策略以减少完成时间;最后,通过数值实验验证该算法的可行性和有效性.  相似文献   

8.
混合遗传算法在柔性系统动态调度中的应用研究   总被引:6,自引:1,他引:5  
本文研究了柔性制造系统实时生产环境下的动态调度问题.提出了基于动态数据库技术的动态调 度系统的框架结构.动态数据库中存储着问题的数据结构,包含工件相关类与机器相关类信息.动态数据库能 够随着生产的进行及时进行更新.扰动发生后,遗传算法根据动态数据库所提供的更新后的调度任务数据,快 速产生新的优化调度方案.通过在遗传算法中嵌入约束解决机制确保遗传算法适应约束的能力,从而提高算 法的收敛速度与精度.仿真实验证实了方案的有效性.  相似文献   

9.
Multi-cluster tools are widely used in majority of wafer fabrication processes in semiconductor industry. Smaller lot production, thinner circuit width in wafers, larger wafer size, and maintenance have resulted in a large quantity of their start-up and close-down transient periods. Yet, most of existing efforts have been concentrated on scheduling their steady states. Different from such efforts, this work schedules their transient and steady-state periods subject to wafer residency constraints. It gives the schedulability conditions for the steady-state scheduling of dual-blade robotic multi-cluster tools and a corresponding algorithm for finding an optimal schedule. Based on the robot synchronization conditions, a linear program is proposed to figure out an optimal schedule for a start-up period, which ensures a tool to enter the desired optimal steady state. Another linear program is proposed to find an optimal schedule for a close-down period that evolves from the steady state period. Finally, industrial cases are presented to illustrate how the provided method outperforms the existing approach in terms of system throughput improvement.   相似文献   

10.
The problem of detailed scheduling of complex flexible manufacturing systems is addressed by optimal flow control. A model problem of scheduling parallel machines is considered to obtain necessary setup conditions. Studying the conditions results in a new solution approach that takes advantage of a juggling analogy of the production/setup scheduling. This analogy is used in the paper to direct construction of a solution method. The method searches for a globally optimal schedule by means of both a juggling strategy and a method of global optimization. The results obtained for a model problem are then generalized to systems with complex production and setup operations. Computational examples demonstrate the validity of the approach.  相似文献   

11.
High-Variety, Low-Volume (HVLV) manufacturing systems are built to produce parts of several types in small quantities and under multiple production objectives. They relate to job-shop systems well known by researchers. One of the most studied assumptions of HVLV systems scheduling is considering that machines may be periodically unavailable during the production scheduling. This article deals with an analytical integrating method using (max, +) algebra to model HVLV scheduling problems subject to preventive maintenance (PM) while considering machines availability constraints. Each machine is subject to PM while maintaining flexibility for the start time of the maintenance activities during the planning period. The proposed model controls the placement of maintenance activities along the production operations. Indeed, the sequencing of maintenance activities on the machines depends on the criteria to minimize and may be different for each criteria value. For preventive maintenance, the proposed model aims to generate the best sequencing between activities while respecting the planning program that satisfy the optimal criteria values. In order to illustrate the performance of the proposed methodology, a simulation example is given.  相似文献   

12.
We propose a work-in-process (WIP) estimation flow control method which serves as a countermeasure against the throughput degradation problem caused by the redundant blocking time of conventional flow control. This method is based on a scheduling technique of which the most important features are: 1) breaking down the entire schedule into individual lot schedules; 2) lot scheduling to reduce redundant blocking time; and 3) WIP estimation for contiguous finite buffer scheduling. The method, first, schedules operational lots at each equipment unit in a fabrication line by using our scheduling procedure for contiguous finite buffers to satisfy the limit capacity of the buffers. Next, the method estimates the future WIP at each equipment group based on predetermined schedules for performing operations. Finally, the method improves the operation timings by continuously supplying WIP estimation to the scheduling procedure. In an actual liquid crystal display (LCD) fabrication line simulation, we have confirmed that the proposed WIP estimation method is a promising one from the standpoint of the line throughput which we obtained.  相似文献   

13.
This is a study of a scheduling method, and its application in a multi-process production department, by which is meant one having numerous process, each with its own unique process sequence. Typically, production sites have many product items that need to go through a series of process sequences in different machines in order to be completely processed. Another frequent problem is the large variety of machines involved.

A practical method is proposed here which can reduce production lead-time in the production department without spending too many man-hours on making the schedule. The system has already been implemented and operated successfully by several electronics manufacturers.  相似文献   


14.
Array manufacturing in thin film transistor-liquid crystal display (TFT-LCD) production network is characterized as a capital-intensive and capacity-constrained production system with re-entrance and batch operations. Effectively using associated machines through optimal capacity planning and order scheduling decisions is a critical issue for array manufacturing. This study develops a capacity planning system (CPS) for TFT-LCD array manufacturing. CPS uses information including master production schedule, order due date, process routing, processing time, and number of machines. In addition, CPS derives the order release time, estimated machine start and finish time, machine allocation, and order completion time to maximize machine workload, improve lateness, and eliminate setup time. This research also develops ant colony optimization (ACO) to seek the optimal order release schedule to maximize a combination of the above objectives. The preliminary experiments are first applied to identify the optimal tuning parameters of the ACO algorithm. Computational experiments are then conducted to evaluate the significance and the robustness of the proposed algorithm compared with other competitive algorithms by full factorial experimental design.  相似文献   

15.
The utilization of advanced industrial informatics, such as industrial internet of things and cyber-physical system (CPS), provides enhanced situation awareness and resource controllability, which are essential for flexible real-time production scheduling and control (SC). Regardless of the belief that applying these advanced technologies under electricity demand response can help alleviate electricity demand–supply mismatches and eventually improve manufacturing sustainability, significant barriers have to be overcome first. Particularly, most existing real-time SC strategies remain limited to short-term scheduling and are unsuitable for finding the optimal schedule under demand response scheme, where a long-term production scheduling is often required to determine the energy consumption shift from peak to off-peak hours. Moreover, SC strategies ensuring the desired production throughput under dynamic electricity pricing and uncertainties in manufacturing environment are largely lacking. In this research, a knowledge-aided real-time demand response strategy for CPS-enabled manufacturing systems is proposed to address the above challenges. A knowledge-aided analytical model is first applied to generate a long-term production schedule to aid the real-time control under demand response. In addition, a real-time optimization model is developed to reduce electricity costs for CPS-enabled manufacturing systems under uncertainties. The effectiveness of the proposed strategy is validated through the case study on a steel powder manufacturing system. The results indicate the exceptional performance of the proposed strategy as compared to other real-time SC strategies, leading to a reduction of electricity cost up to 35.6% without sacrificing the production throughput.  相似文献   

16.
针对ATM交换结构,采用输入缓冲和每条入线在同一个时隙内可传送多于一个信元的策略,利用神经网络具有的实时性、高度并行处理能力和易于电路或光电技术实现等特点,提出了一种Hopfield神经网络调度算法。实验仿真比较表明,该方法不但大大提高了吞吐率,消除了队头阻塞造成的性能恶化,而且降低了信元丢失率和较大程度地降低了平均信元时延,提高了ATM交换结构的性能,实现了信元的优化调度。  相似文献   

17.
Genetic algorithms in integrated process planning and scheduling   总被引:7,自引:2,他引:5  
Process planning and scheduling are actually interrelated and should be solved simultaneously. Most integrated process planning and scheduling methods only consider the time aspects of the alternative machines when constructing schedules. The initial part of this paper describes a genetic algorithm (GA) based algorithm that only considers the time aspect of the alternative machines. The scope of consideration is then further extended to include the processing capabilities of alternative machines, with different tolerance limits and processing costs. In the proposed method based on GAs, the processing capabilities of the machines, including processing costs as well as number of rejects produced in alternative machine are considered simultaneously with the scheduling of jobs. The formulation is based on multi-objective weighted-sums optimization, which are to minimize makespan, to minimize total rejects produced and to minimize the total cost of production. A comparison is done w ith the traditional sequential method and the multi-objective genetic algorithm (MOGA) approach, based on the Pareto optimal concept.  相似文献   

18.
This research investigates the production scheduling problems under maximum power consumption constraints. Probabilistic models are developed to model dispatching-dependent and stochastic machine energy consumption. A multi-objective scheduling algorithm called the energy-aware scheduling optimization method is proposed in this study to enhance both production and energy efficiency. The explicit consideration of the probabilistic energy consumption constraint and the following factors makes this work distinct from other existing studies in the literature: 1) dispatching-dependent energy consumption of machines, 2) stochastic energy consumption of machines, 3) parallel machines with different production rates and energy consumption pattern, and 4) maximum power consumption constraints. The proposed three-stage algorithm can quickly generate near-optimal solutions and outperforms other algorithms in terms of energy efficiency, makespan, and computation time. While minimizing the total energy consumption in the first and second stages, the proposed algorithm generates a detailed production schedule under the probabilistic constraint of peak energy consumption in the third stage. Numerical results show the superiority of the scheduling solution with regard to quality and computational time in real problems instances from manufacturing industry. While the scheduling solution is optimal in total energy consumption, the makespan is within 0.6 % of the optimal on average.  相似文献   

19.
The cyclic hoist scheduling problem is encountered in electroplating facilities, when mass production is required. This class of problems is a branch stemming from the Hoist Scheduling Problem (HSP) where automatic hoist is used for moving electroplates through chemical baths. A repetitive sequence of moves is searched for the hoist in cyclic schedule. To minimize the cycle time of r different part-jobs, we propose a linear optimization approach. An illustrative example is given in order to show some feedback of our exact solving method. Afterward, two comparisons are presented: firstly, between a two 1-cycle homogenous schedule and a 2-cycle heterogeneous part-job and secondly, between 2-cycle and 4-cycle heterogeneous part-job. These comparisons show how, by considering r-cyclic scheduling, we can optimize the cycle length considerably and then the throughput rate of the electroplating line.  相似文献   

20.
基于部分生产重构的冷轧生产重调度方法   总被引:2,自引:2,他引:0  
王利  赵珺  王伟 《自动化学报》2011,37(1):99-106
针对冷轧薄板生产过程单纯根据合同流向组织生产会造成合同在各物流流向中分配不均, 以及机组定修和突发故障等情况造成的部分流向生产停滞等问题, 建立了基于部分重构的冷轧生产过程混杂Petri网生产调度模型. 利用提出的有限搜索蚁群算法, 在不同生产流向的可替代机组之间, 根据机组的产能负荷对合同的生产流向进行部分重构, 实现合同生产过程的再规划与动态调度, 解决了部分机组停机定修和突发故障时的产能分配问题. 将本文提出的方法与全流程合同计划方法相结合, 利用上海宝钢冷轧薄板厂的生产数据进行测试, 表明了所提出的方法提高了冷轧全流程合同计划与调度效果的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号