首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A clonal strain of prolactin-producing rat pituitary tumour cells (GH4C1 cells) was used to study the effect of calcitriol on cyclic adenosine monophosphate (cAMP) production. Calcitriol (10 nM) attenuated both the basal and vasoactive intestinal peptide (VIP)-stimulated cAMP production after 2 days' pretreatment of the cells. The effect was detectable at 1 nM and maximal at about 10 nM. Calcitriol was at least 100 times more potent than calcidiol and 24-hydroxycalcidiol. Calcitriol (10 nM, 4 days) did not affect the specific binding of 125I-VIP, but attenuated the guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS)-stimulated (100 microM) adenylyl cyclase activity by 25%. Calcitriol (10 nM, 4 days) also attenuated both the Mn2+ (1 mM) and the forskolin-stimulated (10 microM) adenylyl cyclase activity by 43 and 41%, respectively. In conclusion, these data suggest that calcitriol attenuates the basal and VIP-stimulated cAMP production by inhibiting the catalytic subunit of the adenylyl cyclase as well as the amount of the G protein Gs alpha.  相似文献   

2.
3.
The recent cloning of a family of high affinity melatonin receptors has provided us with a unique opportunity to define the signal transduction pathways used by these receptors. We have studied signaling through the human Mel1a receptor subtype by stable expression of receptor complementary DNA in NIH 3T3 cells. Our data indicate that the human Mel1a receptor is coupled to inhibition of forskolin-stimulated cAMP accumulation by a pertussis toxin-sensitive G protein. Although melatonin alone is without effect on phosphoinositide hydrolysis, it potentiates the effects of PGF2 alpha stimulation on phospholipase C activation. Melatonin potentiates arachidonate release stimulated by PGF2 alpha and by ionomycin. The effects of melatonin on arachidonate release are sensitive to inhibition of protein kinase C. They are independent of the effects of melatonin on cAMP and do not appear to involve activation of mitogen-activated protein kinase. The effects of melatonin on both phosphoinositide hydrolysis and arachidonate release are sensitive to pertussis toxin treatment. Thus, we show that the melatonin signal is transduced by parallel pathways involving inhibition of adenylyl cyclase and potentiation of phospholipase activation.  相似文献   

4.
The Ca2+-sensing receptor protein and the Ca2+-inhibitable type 6 adenylyl cyclase mRNA are present in a defined segment of the rat renal tubule leading to the hypothesis of their possible functional co-expression in a same cell and thus to a possible inhibition of cAMP content by extracellular Ca2+. By using microdissected segments, we compared the properties of regulation of extracellular Ca2+-mediated activation of Ca2+ receptor to those elicited by prostaglandin E2 and angiotensin II. The three agents inhibited a common pool of hormone-stimulated cAMP content by different mechanisms as follows. (i) Extracellular Ca2+, coupled to phospholipase C activation via a pertussis toxin-insensitive G protein, induced a dose-dependent inhibition of cAMP content (1.25 mM Ca2+ eliciting 50% inhibition) resulting from both stimulation of cAMP hydrolysis and inhibition of cAMP synthesis; this latter effect was mediated by capacitive Ca2+ influx as well as release of intracellular Ca2+. (ii) Angiotensin II, coupled to the same transduction pathway, also decreased cAMP content; however, its inhibitory effect on cAMP was mainly accounted for by an increase of cAMP hydrolysis, although angiotensin II and extracellular Ca2+ can induce comparable release of intracellular Ca2+. (iii) Prostaglandin E2, coupled to pertussis toxin-sensitive G protein, inhibited the same pool of adenylyl cyclase units as extracellular Ca2+ but by a different mechanism. The functional properties of the adenylyl cyclase were similar to those described for type 6. The results establish that the co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in a same cell allows an inhibition of cAMP accumulation by physiological concentrations of extracellular Ca2+.  相似文献   

5.
The reproducibility of serotonin (5-HT) and (+)8-OH-DPAT-mediated inhibition of adenylyl cyclase activity was assessed in membranes, stimulated by forskolin, of rat frontal cortex postmortem as well as of human fronto-cortical, hippocampal and dorsal raphe tissues obtained from autopsy brains. The results revealed that differences between basal and forskolin-stimulated enzyme activities were still significant after 48 h postmortem in rat cortex and in all human brain regions up to 46 h after death. However, a decrease of about 17 and 26% in forskolin-stimulated adenylyl cyclase activity was observed at 24 and 48 h, respectively, in rat cortex. 5-HT and the 5-HT1A receptor agonist, (+)8-hydroxy-2(di-N-propylamino)tetraline (8-OH-DPAT), were able to inhibit forskolin-stimulated adenylyl cyclase activity in a dose-dependent manner for 48 h after death in rat and human brain. In rat cortex, both 5-HT and (+)8-OH-DPAT potencies (EC50, nM) and efficacies (percent of maximum inhibition capacity, %) varied significantly with postmortem delay. Conversely, in human tissues, postmortem delay and subject age did not modify agonist potencies and efficacies. Furthermore, a regionality of 5-HT potency and efficacy was revealed in the human brain. 5-HT was equally potent in cortex and raphe nuclei, while being more potent but less effective in hippocampus. (+)8-OH-DPAT was more active in hippocampus and raphe nuclei than in cortex. (+)8-OH-DPAT behaved as an agonist in all areas, as its efficacy was similar or greater than those obtained with 5-HT. The (+)8-OH-DPAT dose-response curve was completely reversed by 5-HT1A receptor antagonists in rat cortex and all human brain areas. In conclusion, we suggest here that differences between rat and human brain might exist at the level of postmortem degradation of 5-HT-sensitive adenylyl cyclase activity. In human brain, 5-HT1A receptor-mediated inhibition of adenylyl cyclase seems to be reproducible, suggesting that reliable experiments can be carried out on postmortem specimens from patients with neuropsychiatric disorders.  相似文献   

6.
In several cell systems histamine has been shown to stimulate both adenylyl cyclase and phospholipase C through activation of a G protein-coupled H2 receptor. To analyze the bifurcating signal emanating from the activated H2 receptor and to identify the G proteins involved, H1 and H2 histamine receptors were functionally expressed in baculovirus-infected insect cells. Histamine challenge lead to concentration-dependent cAMP formation and Ca2+ mobilization in Sf9 cells infected with a virus encoding the H2 receptor, whereas H1 receptor stimulation only resulted in pronounced phospholipase C activation. To analyze the G protein coupling pattern of histamine receptors, activated G proteins were labeled with [alpha-32P]GTP azidoanilide and identified by selective immunoprecipitation. In insect cell membranes expressing H1 histamine receptors, histamine led to incorporation of the label into alpha q-like proteins, whereas activation of the H2 receptor resulted in labeling of alpha q- and alpha s-like G protein alpha-subunits. In COS cells transfected with H2 receptor complementary DNA, histamine caused concentration-dependent accumulation of cAMP and inositol phosphates; the latter effect was insensitive to pertussis toxin treatment. Histamine stimulation led to a pronounced increase in inositol phosphate production when complementary DNAs coding for alpha q, alpha 11, alpha 14, or alpha 15 G protein alpha-subunits were cotransfected. This increase was specific for Gq family members, as overexpression of alpha 12 or alpha s did not enhance histamine-stimulated phospholipase C activation. In membranes of guinea pig heart, addition of [alpha-32P]GTP azidoanilide resulted in labeling of alpha q and alpha 11 via the activated H1 and also via H2 receptors. These data demonstrate that dual signaling of the activated H2 histamine receptor is mediated by coupling of the receptor to Gs and Gq family members.  相似文献   

7.
In COS-7 cells, all five cloned somatostatin receptors are coupled via inhibitory G proteins to activation of an unidentified phospholipase C-beta (PLC-beta) isozyme and inhibition of adenylyl cyclase. In the present study, intestinal smooth muscle cells (SMC) that express only one receptor type, sstr3, and possess a full complement of G proteins and PLC-beta isozymes were used to identify the PLC-beta isozyme and the G proteins coupled to it and to adenylyl cyclase. Somatostatin-14 bound with high affinity to intestinal SMC; stimulated D-myo-inositol-1,4,5-trisphosphate (IP3) formation, Ca2+ release, and contraction; and inhibited forskolin-stimulated cAMP formation in a pertussis toxin-sensitive fashion. Somatostatin also stimulated phosphoinositide hydrolysis in plasma membranes. Only those somatostatin analogs that shared a high affinity for sstr3 receptors elicited muscle contraction. IP3 formation, Ca2+ release, and contraction in permeabilized SMC and phosphoinositide hydrolysis in plasma membranes were inhibited (approximately 80%) by pretreatment with antibodies to PLC-beta3 but not other PLC-beta isozymes, and by antibodies to Gbeta but not Galpha. Inhibition of cAMP formation was partially blocked by antibody to Galphai1 or Galphao and additively blocked by a combination of both antibodies. Somatostatin-stimulated [35S]GTPgammaS-Galpha complexes in plasma membranes were bound selectively by Galphai1 and Galphao antibodies. We conclude that in smooth muscle sstr3 is coupled to Gi1 and Go; the alpha subunits of both G proteins mediate inhibition of adenylyl cyclase, while the betagamma subunits mediate activation of PLC-beta3.  相似文献   

8.
The human neuroblastoma cell line SK-N-BE expresses delta-opioid receptors negatively coupled to adenylyl cyclase. Prolonged treatment (2 h) of the cells with 100 nM etorphine leads to an almost complete desensitization (8.2 +/- 5.9 vs. 45.8 +/- 8.7% for the control). Other receptors negatively coupled to adenylyl cyclase, namely, D2-dopaminergic, alpha 2-adrenergic, and m2/m4-muscarinic, were identified by screening of these cells, and it was shown that prolonged treatment (2 h) with 1 microM 2-bromo-alpha-ergocryptine or 1 microM arterenol resulted in a marked desensitization of D2-dopaminergic and alpha 2-adrenergic receptors, respectively. Cross-desensitization experiments revealed that pretreatment with etorphine desensitized with the same efficiency the delta-opioid receptor and the D2-dopaminergic receptor, and pretreatment with 2-brorno-alpha-ergocryptine also desensitized both receptors. In contrast, pretreatment with etorphine desensitized only partly the alpha 2-adrenergic receptor response, whereas pretreatment with 1 microM arterenol partly desensitized the delta-opioid receptor response. It is concluded that the delta-opioid receptor-mediated inhibitory response of adenylyl cyclase undergoes heterolgous desensitization, and it is suggested that delta-opioid and D2-dopaminergic receptors are coupled to adenylyl cyclase via a G12 protein, whereas alpha 2-adrenergic receptor could be coupled to the enzyme via two G proteins, G12 and another member of the G1/G0 family.  相似文献   

9.
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) plays an important regulatory role in developing and adult nervous systems. With the exception of the 5-HT3 receptor, all of the cloned serotonin receptors belong to the G protein-coupled receptor superfamily. Subtypes 5-HT6 and 5-HT7 couple to stimulation of adenylyl cyclases through Gs and display high affinities for antipsychotic and antidepressant drugs. In the brain, mRNA for 5-HT6 is found at high levels in the hippocampus, striatum, and nucleus accumbens. 5-HT7 mRNA is most abundant in the hippocampus, neocortex, and hypothalamus. To better understand how serotonin might control cAMP levels in the brain, we coexpressed 5-HT6 or 5-HT7A receptors with specific isoforms of adenylyl cyclase in HEK 293 cells. The 5-HT6 receptor functioned as a typical Gs-coupled receptor in that it stimulated AC5, a Gs-sensitive adenylyl cyclase, but not AC1 or AC8, calmodulin (CaM)-stimulated adenylyl cyclases that are not activated by Gs-coupled receptors in vivo. Surprisingly, serotonin activation of 5-HT7A stimulated AC1 and AC8 by increasing intracellular Ca2+. 5-HT also increased intracellular Ca2+ in primary neuron cultures. These data define a novel mechanism for the regulation of intracellular cAMP by serotonin.  相似文献   

10.
The present study was designed to determine the cellular signaling mechanisms responsible for mediating the effects of angiotensin II on proximal tubular Na+,K+-ATPase activity. Angiotensin II produced a biphasic effect on Na+,K+-ATPase activity: stimulation at 10(-13) - 10(-10) M followed by inhibition at 10(-7) - 10(-5) M of angiotensin II. The stimulatory and inhibitory effects of angiotensin II were antagonized by losartan (1nM) suggesting the involvement of AT1 receptor. Angiotensin II produced inhibition of forskolin-stimulated cAMP accumulation at 10(-13) - 10(-10) M followed by a stimulation in basal cAMP levels at 10(-7) - 10(-5) M. Pretreatment of proximal tubules with losartan (1nM) antagonized both the stimulatory and inhibitory effects of angiotensin II on cAMP accumulation. Pretreatment of the proximal tubules with pertussis toxin (PTx) abolished the stimulation of Na+,K+-ATPase activity but did not affect the inhibition of Na+,K+-ATPase activity produced by angiotensin II. Pretreatment of the tubules with cholera toxin did not alter the biphasic effect of angiotensin II on Na+,K+-ATPase activity. Mepacrine (10microM), a phospholipase A2 (PLA2) inhibitor, reduced only the inhibitory effect of angiotensin II on Na+,K+-ATPase activity. These results suggest that the activation of AT1 angiotensin II receptors stimulates Na+,K+-ATPase activity via a PTx-sensitive G protein-linked inhibition of adenylyl cyclase pathway, whereas the inhibition of Na+,K+-ATPase activity following AT1 receptor activation involves multiple signaling pathways which may include stimulation of adenylyl cyclase and PLA2.  相似文献   

11.
Extracellular ATP has been reported to exert mitogenic and contractile effects on cultured renal mesangial cells (MCs). Since it is possible that these actions involve changes in the cAMP second messenger system, we examined the effect of extracellular nucleotides on the accumulation of cAMP in rat MCs. ATP, UTP and adenosine 5'-0-(3-thio)triphosphate (ATP gamma S) (100 microM) had no significant effects on baseline cAMP levels, but inhibited forskolin-stimulated accumulation of cAMP by 21-75% in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Maximal inhibitory effects were observed at 100 microM of ATP gamma S with a threshold dose of 1 microM. ATP gamma S, ATP and UTP were the most potent inhibitors indicating stimulation of the P2u receptor. The P2x agonists adenosine 5'-(alpha, beta-methylene) triphosphate and adenosine 5'-(beta, gamma-methylene) triphosphate, and the P2y agonist 2-methylthio-ATP did not affect cAMP accumulation. Treatment with the P2 receptor antagonist suramin (200 microM) reduced the inhibition by 58%. The inhibitory effects of the nucleotides were significantly attenuated by preincubation with pertussis toxin (10-100 ng/ml). Inhibition of phospholipase C and protein kinase C did not prevent the inhibitory effect of the nucleotides. Inhibitors of forskolin-stimulated cAMP accumulation had different effects on DNA synthesis in cultured MCs as measured by 3H-thymidine uptake at 48 h: ATP, ATP gamma S and the inhibitor of adenylyl cyclase, SQ 22536, stimulated DNA synthesis in MCs, while UTP showed no significant mitogenic effect. Agents which increased baseline levels of intracellular cAMP (forskolin, IBMX, dibutyryl-cAMP) significantly diminished DNA synthesis in MCs. The results indicate that the P2u-purinergic receptor mediates inhibition of forskolin-induced cAMP accumulation which is likely due to inhibition of adenylyl cyclase. This effect appears to be partially mediated by PTX-sensitive G proteins. While the increase in cAMP accumulation is anti-mitogenic, inhibition of cAMP accumulation by P2u receptors is not correlated with MC growth control. Thus, additional mechanisms other than inhibition of cAMP accumulation by P2u receptors are likely to be involved in the mitogenesis of extracellular ATP.  相似文献   

12.
A cyclic AMP-responsive reporter cell line has been established through the stable expression of a luciferase reporter plasmid in Chinese hamster ovary (CHO) cells. Reporter cells showed a dose-dependent expression of luciferase in response to incubation with forskolin. These CHO cells were screened for endogenous G protein-coupled receptors capable of stimulating or inhibiting adenylyl cyclase, by monitoring changes in luciferase expression. Serotonin (5-HT) receptor agonist ligands caused an inhibition of forskolin-stimulated luciferase expression in the rank order 5-carboxamidotryptamine > 5-HT > sumatriptan > 8-hydroxy-2-(di-n-propylamino)tetralin. The response to 5-HT was reversed by the 5-HT1 receptor antagonists cyanopindolol and pindolol, but not the 5-HT2 receptor antagonist ketanserin. Calcitonin was more potent than calcitonin gene-related peptide (CGRP) at stimulating luciferase expression in this cell line, and these responses were insensitive to the CGRP receptor antagonist, CGRP (8-37). These results were consistent with the presence of 5-HT(1B-like) and calcitonin (C1a-like) receptors in CHO cells, with the responses to 5-HT and CGRP being pertussis and cholera toxin-sensitive, respectively. This reporter gene assay gave the expected pharmacological profile for these receptors when compared with cyclic AMP accumulation assays, confirming its value as a functional assay for G protein-coupled receptors linked to adenylyl cyclase.  相似文献   

13.
The two forms of pituitary adenylyl cyclase-activating polypeptide (PACAP-27 and -38) are neuropeptides of the secretin/glucagon/vasoactive intestinal polypeptide/growth-hormone-releasing hormone family and regulate hormone release from the pituitary and adrenal gland. They may also be involved in spermatogenesis, and PACAP-38 potently stimulates neuritogenesis and survival of cultured rat sympathetic neuroblast and promotes neurite outgrowth of PC-12 cells. The PACAP type-I receptor (found in hypothalamus, brain stem, pituitary, adrenal gland and testes), specific for PACAP, is positively coupled to adenylyl cyclase and phospholipase C. The recently cloned type II receptor does not discriminate between PACAP and vasoactive intestinal polypeptide and is coupled to only adenylyl cyclase. Here we have used a new expression cloning strategy, based on the induction of a reporter gene by cyclic AMP, to isolate a complementary DNA encoding the type-I PACAP receptor. On transfection of this cDNA, both PACAP-27 and -38 stimulate adenylyl cyclase with similar EC50 values (50% effective concentration, 0.1-0.4 nM), whereas only PACAP-38 stimulates phospholipase C with high potency (EC50 = 15 nM). Four other splice variants were isolated with insertions at the C-terminal end of the third intracellular loop. Expression of these cDNAs revealed altered patterns of adenylyl cyclase and phospholipase C stimulation, suggesting a novel mechanism for fine tuning of signal transduction.  相似文献   

14.
Although the G protein betagamma dimer is an important mediator in cell signaling, the mechanisms regulating its activity have not been widely investigated. The gamma12 subunit is a known substrate for protein kinase C, suggesting phosphorylation as a potential regulatory mechanism. Therefore, recombinant beta1 gamma12 dimers were overexpressed using the baculovirus/Sf9 insect cell system, purified, and phosphorylated stoichiometrically with protein kinase C alpha. Their ability to support coupling of the Gi1 alpha subunit to the A1 adenosine receptor and to activate type II adenylyl cyclase or phospholipase C-beta was examined. Phosphorylation of the beta1 gamma12 dimer increased its potency in the receptor coupling assay from 6.4 to 1 nM, changed the Kact for stimulation of type II adenylyl cyclase from 14 to 37 nM, and decreased its maximal efficacy by 50%. In contrast, phosphorylation of the dimer had no effect on its ability to activate phospholipase C-beta. The native beta1gamma10 dimer, which has 4 similar amino acids in the phosphorylation site at the N terminus, was not phosphorylated by protein kinase C alpha. Creation of a phosphorylation site in the N terminus of the protein (Gly4 --> Lys) resulted in a beta1 gamma10G4K dimer which could be phosphorylated. The activities of this beta gamma dimer were similar to those of the phosphorylated beta1 gamma12 dimer. Thus, phosphorylation of the beta1 gamma12 dimer on the gamma subunit with protein kinase C alpha regulates its activity in an effector-specific fashion. Because the gamma12 subunit is widely expressed, phosphorylation may be an important mechanism for integration of the multiple signals generated by receptor activation.  相似文献   

15.
The potential role of alpha2-adrenoceptors in modulating the activity of adenylyl cyclase in the rat striatum was examined. The selective alpha2-adrenoceptor agonist, UK14,304, produced a concentration-dependent inhibition of forskolin-stimulated accumulation of cAMP in striatal slices. The effect of UK14,304 was reversed by pre-incubation of striatal slices with the selective alpha2-adrenoceptor antagonist, RX821002. To determine whether alpha2C-adrenoceptors contribute to the alpha2-adrenoceptor-induced inhibition of forskolin-stimulated cAMP accumulation, an antisense oligodeoxynucleotide directed against alpha2C-adrenoceptor mRNA (alpha(2C)AS) or a random sequence (RS) was infused directly into the striatum. The ability of alpha(2C)AS to reduce the expression of alpha2C-adrenoceptors has been previously demonstrated. Alpha2C(AS) infusions did not reduce the ability of UK14,304 to inhibit forskolin-stimulated cAMP accumulation. Instead, alpha(2C)AS significantly enhanced forskolin-stimulated cAMP accumulation on the infusion side compared to the contralateral striatum. In contrast to the effects of alpha(2C)AS, infusions of RS had no effects on forskolin-stimulated cAMP accumulation or on the ability of UK14,304 to inhibit this effect. Incubation of striatal slices from untreated rats with RX821002 could mimic the ability of alpha(2C)AS infusion to enhance forskolin-stimulated cAMP accumulation, and did so in a concentration-dependent manner. Alpha2-adrenoceptors are negatively coupled to adenylyl cyclase in the rat striatum and alpha2C-adrenoceptors appear to be under tonic activation by an endogenous ligand in striatal slices.  相似文献   

16.
The G protein beta5 subunit differs substantially in amino acid sequence from the other known beta subunits suggesting that beta gamma dimers containing this protein may play specialized roles in cell signaling. To examine the functional properties of the beta5 subunit, recombinant beta5 gamma2 dimers were purified from baculovirus-infected Sf9 insect cells using a strategy based on two affinity tags (hexahistidine and FLAG) engineered into the N terminus of the gamma2 subunit (gamma2HF). The function of the pure beta5 gamma2HF dimers was examined in three assays: activation of pure phospholipase C-beta in lipid vesicles; activation of recombinant, type II adenylyl cyclase expressed in Sf9 cell membranes; and coupling of alpha subunits to the endothelin B (ETB) and M1 muscarinic receptors. In each case, the efficacy of the beta5 gamma2HF dimer was compared with that of the beta1 gamma2HF dimer, which has demonstrated activity in these assays. The beta5 gamma2HF dimer activated phospholipase C-beta with a potency and efficacy similar to that of beta1 gamma2 or beta1 gamma2HF; however, it was markedly less effective than the beta1 gamma2HF or beta1 gamma2 dimer in its ability to activate type II adenylyl cyclase (EC50 of approximately 700 nM versus 25 nM). Both the beta5 gamma2HF and the beta1 gamma2HF dimers supported coupling of M1 muscarinic receptors to the Gq alpha subunit. The ETB receptor coupled effectively to both the Gi and Gq alpha subunits in the presence of the beta1 gamma2HF dimer. In contrast, the beta5 gamma2HF dimer only supported coupling of the Gq alpha subunits to the ETB receptor and did not support coupling of the Gi alpha subunit. These results suggest that the beta5 gamma2HF dimer binds selectively to Gq alpha subunits and does not activate the same set of effectors as dimers containing the beta1 subunit. Overall, the data support a specialized role for the beta5 subunit in cell signaling.  相似文献   

17.
In intact, but not in permeabilized, human erythroid progenitor cells, thrombin and phorbol esters potentiate cellular cAMP formation in response to Gs-coupled receptor agonists such as prostaglandin E1 (PGE1). We show here that the two agonists achieve their phenotypically similar effects by using distinctly different signaling pathways, both of which require protein kinase C (PKC) activation. After short term exposure (11 min), phorbol esters caused an alkaline shift of cellular pH by approximately 0.1 unit, resulting in a 1.5-2-fold increase in PGE1-induced cAMP formation. The effect of phorbol esters was inhibited by 5-(N-ethyl-N-isopropyl)amiloride, a specific inhibitor of the Na+/H+ exchanger, and by the PKC inhibitors GF 109203X, G? 6976, and staurosporine. Thrombin increased cellular pH by only 0.02-0.05 unit but seemed to potentiate PGE1-stimulated cAMP formation by an effect on the Gs-activated adenylyl cyclase involving a Ca2+-independent (novel) PKC. This effect was inhibited by GF 109203X and staurosporine but was resistant to 5-(N-ethyl-N-isopropyl)amiloride or G? 6976. Inactivation of PKC by incubation of the cells in the presence of 10 nM phorbol-12-myristate-13-acetate for 18 hr completely abolished the potentiating effect of thrombin on cyclase activity, whereas the pH-dependent stimulation was fully retained. Northern blots with specific cDNA probes and a lack of Ca2+ sensitivity indicate that progenitor cells predominantly express adenylyl cyclase type VII. Our results suggest that in normal human erythroid progenitors, thrombin can activate pH-dependent and -independent, PKC-linked pathways converging on adenylyl cyclase type VII to potentiate cAMP formation in response to Gs-coupled receptor agonists.  相似文献   

18.
Chronic treatment of C6 glioma cells stably expressing the rat delta opioid receptor (C6delta) with full agonists resulted in receptor down-regulation. Chronic [D-Ser2,L-Leu5]enkephalyl-Thr treatment caused a decrease in cell surface as well as a decrease in agonist-stimulated [35S]guanosine-5'-O-(3-thio)triphosphate binding. Treatment with full agonists for 12 hr resulted in a 90% decrease in receptor number that was paralleled by a decrease in the ability of agonist to stimulate [35S]guanosine-5'-O-(3-thio)triphosphate binding and inhibit forskolin-stimulated adenylyl cyclase. Of the remaining receptors, a smaller fraction of receptors (41 +/- 4 vs. 56 +/- 4% in control) exhibited high affinity for agonist as compared to receptors in control membranes. Elimination of functional guanosine triphosphate binding protein (G protein) by Pertussis toxin pretreatment did not alter the ability of agonist to down regulate receptor. We hypothesized that agonist affinity (not efficacy) would be a predictor of an agonist's ability to down-regulate receptor. However, we found that only full agonists were able to down-regulate receptor number, G protein activation and adenylyl cyclase inhibition. Chronic exposure to partial agonist 7-spiroindinooxymorphone, which has a very high affinity for the receptor, as well as morphine, did not cause receptor down-regulation. Taken together, these results suggest that full agonists alter receptor conformation such that the altered conformation is recognized by G protein as well as proteins involved in receptor down-regulation. In addition, down-regulation is independent of agonist-mediated G protein activation and subsequent down-stream signaling.  相似文献   

19.
The potential effect of inhibition of phospholipase C on the response of Gi-coupled receptors was investigated in neuroblastoma x glioma hybrid (NG108-15) cells. The phospholipase C specific inhibitor 1-[6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-1H -pyrrole-2,5-dione (U73122), which did not affect basal and forskolin-stimulated adenylyl cyclase activities, time- and dose-dependently blocked delta-opioid receptor-mediated inhibition of adenylyl cyclase activity, the EC50 (0.5 microM) of which was consistent with that for inhibition of bradykinin-dependent phospholipase C activation (EC50 = 1 microM). U73122 treatment also blocked functional responses of m4 muscarinic receptor and alpha2-adrenoceptor in NG108-15 cells and three opioid receptors (mu, delta and opioid receptor-like receptor (ORL1)) in human neuroblastoma SK-N-SH cells. 1-[6-((17Beta-3-Methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl]-2, 5-pyrrolidinedione (U73343), an inactive analog of U73122, did not show any effect, which suggests that the blockade by U73122 of Gi-coupled receptor-mediated signaling is probably mediated through inhibition of phospholipase C, although a possible direct modification of G proteins can not be excluded. Furthermore, treatment with U73122 but not U73343 blocked the GTP-induced inhibition of adenylyl cyclase, indicating blockade at the level of Gi proteins.  相似文献   

20.
D2L dopamine receptor activation results in rapid inhibition and delayed heterologous sensitization of adenylate cyclase in several host cell types. The D2L dopamine receptor was stably transfected into NS20Y neuroblastoma cells to examine inhibition and sensitization in a neuronal cell environment and to identify the particular G-proteins involved. Acute activation of D2L receptors with the selective D2 agonist quinpirole inhibited forskolin-stimulated cAMP accumulation, whereas prolonged incubation (2 hr) with quinpirole resulted in heterologous sensitization (more than twofold) of forskolin-stimulated cAMP accumulation in NS20Y-D2L cells. To unambiguously identify the pertussis toxin (PTX)-sensitive G-proteins responsible for inhibition and sensitization, we used viral-mediated gene delivery to assess the ability of genetically engineered PTX-resistant G-proteins (Galphai1*, Galphai2*, Galphai3*, and Galphao*) to rescue both responses after PTX treatment. The expression and function of individual recombinant G-proteins was confirmed with Western blotting and inhibition of GTPgammaS-stimulated adenylate cyclase, respectively. To assess the specificity of D2L-Galpha coupling, cells were infected with herpes simplex virus (HSV) recombinants expressing individual PTX-resistant G-protein alpha subunits and treated with PTX, and quinpirole-induced responses were measured. Infection of NS20Y-D2L cells with HSV-Galphao* rescued both inhibition and sensitization in PTX-treated cells, whereas infection with HSV-Galphai1*, HSV-Galphai2*, or HSV-Galphai3* failed to rescue either response. In summary, the current study provides strong evidence that the D2L dopamine receptor couples to Galphao in neuronal cells, and that this coupling is responsible for both the acute and subacute effects of D2 receptor activation on adenylate cyclase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号