首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jingling Yan  Lianxun Gao 《Polymer》2005,46(18):7678-7683
4,4′-Bis(3,4-dicarboxyphenylthio)diphenyl sulfone dianhydride(4,4′-PTPSDA) and 4,4′-bis(2,3-dicarboxyphenylthio)diphenyl sulfone dianhydride(3,3′-PTPSDA) were synthesized from chlorophthalic anhydrides and bis(4-mercaptophenyl)sulfone. Their structures were determined via IR spectra, 1H NMR and elemental analysis. A series of polyimides were prepared from isomeric PTPSDAs and aromatic diamines in 1-methyl-2-pyrrolidinone (NMP) via the conventional two-step method. Polyimides based on 4,4′-PTPSDA and 3,3′-PTPSDA have good solubility in polar aprotic solvents and phenols. The 5% weight-loss temperatures of isomeric polyimides were near 500 °C in N2. DMTA and DSC analyses indicated that the glass-transition temperatures of polyimides from 3,3′-PTPSDA are higher than those of polyimides from 4,4′-PTPSDA. The wide-angle X-ray diffraction showed that all polyimides are amorphous. The polyimides from 3,3′-PTPSDA showed higher permeability but lower permselectivity compared with those from 4,4′-PTPSDA.  相似文献   

2.
Qizhen Liang  Cheng Liu  Dingyi Hong 《Polymer》2005,46(16):6258-6265
A series of aromatic copolyamides containing phthalazinone moiety and ether linkages were prepared from 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-(aminophenoxyl)phenyl)](2H)phthalazin-1-one (DHPZ-DA), p-phenylenediamine (PPD), 4,4′-diaminodiphenylether (DAPE) and terephthaloyl dichloride (TPC) by low temperature solution polycondensation. The copolyamides had relatively high inherent viscosities, ranging from 1.86 to 5.30 dl/g. The copolyamides showed Tg values between 297 and 351 °C. Solubility of these copolyamides was improved in NMP, DMAc, NMP (1 wt% LiCl) and DMAc (1 wt% LiCl) by introducing phthalazinone moiety and ether linkages into the main chain. And they had good thermal stability, associated with 5 and 10% weight loss temperatures in the range of 480-516 and 501-532 °C in nitrogen, respectively. WAXD measures indicated these copolyamides were semicrystalline in nature. Some of these copolyamides exhibited lyotropic liquid crystalline behavior in concentrated H2SO4, NMP (1 wt% LiCl), and even in NMP solutions, as evidenced by polarizing light microscopy.  相似文献   

3.
Juan Yang  Abhishek Roy 《Polymer》2008,49(24):5300-5306
tert-Butylphenyl-terminated disulfonated poly(arylene ether sulfone) random copolymers with a sulfonation degree of 35 mol% (BPS35) and controlled molecular weights (Mn), 20-50 kg mol−1, were successfully prepared by direct copolymerization of the two activated halides, 4,4′-dichlorodiphenyl sulfone (DCDPS) and 3,3′-disulfonate-4,4′-dichlorodiphenyl sulfone (SDCDPS) with 4,4′-biphenol and the endcapper, 4-tert-butylphenol. Dilute viscosity measurements of the BPS35 random copolymers were successfully conducted in NMP containing various concentrations of LiBr from 0.01 to 0.2 M and mostly at 0.05 M according to the measured theory. The effects of salt concentration and molecular weights of the copolymers on the viscometric behavior were studied and compared with published data for sulfonated polystyrene. The charge density parameter (ξ) for the BPS35 copolymers was determined to be smaller than 1, suggesting that no counterion condensation occurs. Studies of the effect of ionic strength (I) on the intrinsic viscosities ([η]) under theta condition were obtained by plotting [η] vs. I−1/2 and extrapolating to infinite ionic strength. For salt-free BPS35 solutions, the viscometric behavior was shown to fit well with the Liberti-Stivala equation, providing a way to determining intrinsic viscosity when the copolymer charge is fully screened. Intrinsic viscosity and molecular weight characterization of BPS35 copolymers by SEC and static light scattering are also presented. The results are very useful for characterizing polymeric electrolyte membrane (PEM) for fuel cells, reverse osmosis and ionic transducer membranes.  相似文献   

4.
Zhiqiang Hu  Shanjun Li  Xiaoyun Liu 《Polymer》2005,46(14):5278-5283
Five fluorenyl cardo diamines containing different alkyl substituents were synthesized and characterized. A series of fluorenyl cardo polyimides were prepared by polycondensation of these cardo diamines with 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 3,3′,4,4′-biphenyl tetracarboylic dianhydride (BPDA) and pyromellitic dianhydride (PMDA). Most of fluorenyl cardo polyimides exhibited excellent solubility in common organic solvents such as m-cresol, chloroform, tetrahydrofuran (THF), N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAC) etc. and intrinsic viscosity in N,N-dimethylacetamide (DMAC) ranged from 0.31 to 0.92 dl/g. Tg of polyimides based on ODPA decrease with the number and size of alkyl substituents on fluorenyl cardo diamine. The results show that the incorporation of noncoplanar structure led by the introducing alkyl substituents on fluorenyl cardo diamines improves the solubility of cardo polyimides in organic solvents without sacrificing thermal properties.  相似文献   

5.
A new diamine monomer containing noncoplanar methyl substitution, 2,2′-dimethyl-4,4′-bis(2-trifluoromethyl-4-aminophenoxy)biphenyl (DBTFAPB) was successfully synthesized and used in the preparation of a series of polyamides and polyimides by direct polycondensation with various aromatic dicarboxylic acids and tertacarboxylic dianhydrides. A new noncoplanar dicarboxylic acid monomer containing noncoplanar methyl substitution, 2,2′-dimethyl-4,4′-bis(2-trifluoromethyl-4-trimellitimidophenoxy)biphenyl (DBTFTPB) was also successfully synthesized by refluxing the diamine, DBTFAPB, with trimellitic anhydride in glacial acetic acid. A series of new poly(amide-imide)s were prepared directly from DBTFTPB with various diamines in N-methyl-2-pyrrolidinone (NMP). All the polymers exhibited excellent solubility in solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridine, tetrahydrofuran (THF), cyclohexanone and γ-butyrolactone at room temperature or upon heating at 70 °C. Inherent viscosities of the polymers were found to range between 0.60 and 1.34 dL g−1. Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weight up to 7.3×104 and 17.9×104, respectively. These polymers showed that the glass transition temperatures were between 230 and 265 °C, and the 10% mass loss temperatures were higher than 460 °C in nitrogen atmosphere. All the polymers could be cast into flexible and tough films from DMAc solutions. They had a tensile strength in the range of 82-124 MPa and a tensile modulus in the range of 1.9-2.9 GPa. These polymers exhibited low dielectric constants ranging from 2.87 to 4.03, low moisture absorption in the range of 0.29-3.20%, and high transparency with an ultraviolet-visible absorption cut-off wavelength in the 347-414 nm range.  相似文献   

6.
Min Mao  S. Richard Turner 《Polymer》2007,48(21):6241-6245
A linear rigid bisphenol monomer, 4,4′-dihydroxyterphenyl (DHTP), has been incorporated into poly(aryl ether sulfone)s (PAESs) in a study to impart crystallization to these amorphous polymers. The PAES made from DHTP and dichlorodiphenylsulfone (DCDPS) is semi-crystalline but not soluble or thermally processable. Three bisphenols, 4,4′-isopropylidenediphenol (BPA), 4,4′-(hexafluoroisopropylidene)diphenol (BPAF) and 4,4′-dihydroxybiphenyl (BP), have been copolymerized with DHTP and DCDPS in order to study the effect of structure on crystallinity and processability. Both random and segmented copolymers containing different amounts of DHTP have been prepared via standard solution nucleophilic aromatic substitution polymerization technique. Only segmented polysulfone containing 50% BP and 50% DHTP was found to be semi-crystalline. This PAES had a melting temperature (Tm) 320 °C in the first heating cycle of a DSC measurement and the presence of crystallites was confirmed by wide angle X-ray diffraction (WAXS).  相似文献   

7.
Nam-Ho You 《Polymer》2009,50(3):789-9186
New polyimides (PIs) containing thioether and sulfonyl groups in their main chains have been developed. These PIs were synthesized by a two-step polycondensation procedure from several dianhydrides such as 4,4′-[p-thiobis(phenylenesulfanyl)] diphthalic anhydride (3SDEA), 4,4′-oxydiphthalic anhydride (ODPA), 4,4′-[sulfonylbis(phenylenesulfanyl)] diphthalic anhydride (pDPSDA) and a new sulfonyl and sulfur-containing aromatic diamine, 2,7-bis(4′-aminophenylenesulfanyl)thianthrene-5,5,10,10-tetraoxide (APTTT). All of the PIs show good thermal and optical properties such as optical transparency higher than 80% at 450 nm for a thickness of ca. 10 μm, glass transition temperatures higher than 250 °C, thermal decomposition temperatures (T10%) in the range of 504-514 °C. Because of the two sulfonyl groups at each monomer unit in the polymer main chain, all of the PIs show good transparency maintaining relatively high refractive index.  相似文献   

8.
A novel fluorinated diamine monomer, 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-3,3′,5,5′-tetramethylbiphenyl, was prepared by a nucleophilic chloro-displacement reaction of 3,3′,5,5′-tetramethyl-4,4′-biphenol with 2-chloro-5-nitrobenzotrifluoride and subsequent reduction of the intermediate dinitro compound. The diamine was reacted with aromatic dianhydrides to form polyimides via a two-step polycondensation method; formation of poly(amic acid)s, followed by thermal imidization. All the resulting polyimides were readily soluble in many organic solvents and exhibited excellent film forming ability. The polyimides exhibited high Tg (312-351 °C), good thermal stability, and good mechanical properties. Low moisture absorptions (0.2-1.1 wt%), low dielectric constants (2.54-3.64 at 10 kHz), and low color intensity were also observed.  相似文献   

9.
Feng Liu  Huili Yang 《Polymer》2006,47(3):937-945
This paper reports the synthesis of a novel maleimide-terminated thioetherimide oligomer and its copolymerization with reactive solvents bearing vinyl. Starting from 3-chlorophthalic anhydride and 4-chlorophthalic anhydride, 2,2′,3,3′-thiodiphenyl tertracaboxylic dianhydride (3,3′-TDPA) and 3,3′,4,4′-thiodiphenyl tertracaboxylic dianhydride (4,4′-TDPA) were synthesized. Thereby, a novel maleimide-terminated thioetherimide oligomer was prepared from. 3,3′-TDPA, 4,4′-TDPA, 3,3′-dimethyl-4,4′-diaminodiphenylmethane (DMMDA) and maleic anhydride. Binary and ternary copolymer resin were derived from corresponding binary and ternary homogeous solution consisting of thioetherimide oligomer, reactive solvent N-vinylpyrrolidone (NVP) or N,N′-dimethylacrylamide (DMAA) and divinylbenzene (DVB) as modifier, initiated either by gamma ray irradiation or by benzoyl peroxide (BPO). Thermal and mechanical properties of copolymer resin are determined and compared in terms of the kind of reactive solvent, addition of modifier DVB. The effect of initiation approach on property of final copolymer resin were studied. Phase separation and sub-transition of ternary copolymer resin induced by BPO are observed, which could be accounted for by thermal movement of DMAA molecules during thermal initiation. Structure-property relationship of copolymer resin was discussed. The effect of monomer molar ratio of 3,3′-TDPA and 4,4′-TDPA on thermal and mechanical properties were investigated.  相似文献   

10.
A series of multiblock copolymers based upon alternating segments of a hydrophilic disulfonated poly(arylene ether sulfone) and a hydrophobic fluorine-terminated poly(arylene ether benzonitrile) (6FPAEB) were synthesized and characterized for use as proton exchange membranes (PEM). The ion-exchange capacity of the block copolymers were varied by utilizing 4,4′-biphenol or hydroquinone in combination with 3,3′-disulfonated-4,4′-dichlorodiphenyl sulfone (SDCDPS) to form the hydrophilic segments. The alternating block copolymer morphology was achieved by using mild temperatures to link the oligomers together and minimize ether–ether interchange reactions. Both the 4,4′-biphenol and hydroquinone based membranes showed high proton conductivity with moderate water uptake and good mechanical properties. The block copolymers displayed nanophase separated morphologies, confirmed by transmission electron microscopy (TEM) and small angle x-ray scattering (SAXS). The strong membrane performance was attributed to the multi-phase morphology.  相似文献   

11.
12.
A series of functional polyhedral oligomer silsesquioxnae (POSS)/polyimide (PI) nanocomposites were prepared using a two-step approach, first, the octa(aminophenyl)silsesquioxane (OAPS)/NMP solution was mixed with polyamic acid (PAA) solution prepared by reacting 4,4′-diaminodiphenylmethane and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride in NMP, and second, the polycondensation solution was treated by thermal imidization. The well-defined ‘hard particles’ (POSS) and the strong covalent bonds between the PI and the ‘hard particles’ lead to a significant improvement in the thermal mechanical properties of the resulting nanocomposites. The glass transition temperature dramatically increases while the coefficient of thermal expansion (CTE) decreases, owing to the significant increase of the cross-linking density in the PI-POSS nanocomposites. The thermal stability and mechanical property of the nanocomposites were also improved.  相似文献   

13.
Samdae Park  Jin Chul Kim 《Polymer》2011,52(10):2170-240
A series of soluble poly(amic acid) precursors were prepared from a new carbzole-containing monomer, 3,3′-bis[9-carbazole(ethyloxy)biphenyl]-4,4′-diamine (HAB-CBZ) by polycondensation with four different aromatic dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-diphenylethertetracarboxylic dianhydride (ODPA), and 3,3′,4,4′-diphenylsulfonyltetracarboxylic dianhydride (DSDA). From the precursors, nanoscale thin films of polyimides (PIs) were prepared by spin-coating and subsequent thermal imidization. All the PIs exhibited excellent thermal and dimensional stability. In particular, the PIs based on the PMDA and BPDA units revealed excellent chemical resistance to organic solvents, in addition to the high thermal and dimensional stability, which are required for the fabrication of high performance memory devices in three-dimensionally multi-stack structure. Devices fabricated with nanoscale thin PI films exhibited excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 1010. The active PI films were found to operate at 2.2-3.3 V, depending on the chemical structures. This study found that the imide rings as local charge trap sites are necessary to enhance the memory performance in addition to carbazole moiety. All the results collectively indicate that the thermally, dimensionally and chemically stable PIs of this study are a promising material for the mass production at low cost of high performance, programmable nonvolatile WORM memory devices that can be operated with low power consumption in unipolar switching mode.  相似文献   

14.
A time-temperature-glass transition temperature diagram under a dynamic-heating condition (dynamic t-Tdyn-Tg diagram) was developed to analyze physicochemical transitions of a reacting polyisoimide system using 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 3,3′-diaminodiphenyl sulfone (3,3′-DDS) as a model system. Under the dynamic-heating condition, the complex electric modulus properties exhibited two transitions at high frequencies but three transitions at lower frequencies, due to the coupled phenomena of the viscoelastic glass-rubber transitions and the kinetic increment of the glass transition temperature of the isomerizing polyisoimide. The dynamic t-Tdyn-Tg diagram was proposed to analyze those multiple peaks to identify the material status and the transition temperatures corresponding to the initial glass transition (Tg0), vitrification (Tvit), and final glass transition (Tg∞) temperatures. Using the developed methodology, the isomerization of polyisoimide, which is usually difficult to analyze, was successfully investigated to identify the relationships among the thermodynamic, viscoelastic, and kinetic processes.  相似文献   

15.
Hossein Ghassemi 《Polymer》2006,47(11):4132-4139
New proton exchange membranes were prepared and evaluated as polymer electrolytes for a proton exchange membrane fuel cell (PEMFC). Sulfonated-fluorinated poly(arylene ether) multiblocks (MBs) were synthesized by nucleophilic aromatic substitution of highly activated fluorine terminated telechelics made from decafluorobiphenyl with 4,4′-(hexafluoroisopropylidene)diphenol and hydroxyl-terminated telechelics made from 4,4′-biphenol and 3,3′-disulfonated-4,4′-dichlorodiphenylsulfone. Membranes with various sulfonation levels were successfully cast from N-methyl-2-pyrrolidinone. An increase sulfonated block size in the copolymer resulted in enhanced membrane ion exchange capacity and proton conductivity. The morphological structure of MB copolymers was investigated by tapping mode atomic force microscopy (TM-AFM) and compared with those of Nafion® and sulfonated poly(arylene ether) random copolymers. AFM images of MBs revealed a very well defined phase separation, which may explain their higher proton conductivities compared to the random copolymers. The results are of particular interest for hydrogen/air fuel cells where conductivity at high temperature and low relative humidity is a critical issue.  相似文献   

16.
Hongjie Xu  Jie Yin 《Polymer》2007,48(19):5556-5564
A novel sulfonated polybenzimidazole, sulfonated poly[2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (SOPBI), was successfully prepared by post-sulfonation reaction of the parent polymer, poly[2,2′-(p-oxydiphenylene)-5,5′-bibenzimidazole] (OPBI), using concentrated and fuming sulfuric acid as the sulfonating reagent at 80 °C, and the degree of sulfonation (DS) could be regulated by controlling the reaction conditions. No significant polymer degradation was observed in the post-sulfonation processes. Direct polymerization of 4,4′-dicarboxydiphenyl ether-2,2′-disulfonic acid disodium salt (DCDPEDS) and 3,3′-diaminobenzidine (DABz), however, resulted in insoluble gels either in polyphosphoric acid (PPA) or in phosphorus pentoxide/methanesulfonic acid (PPMA) in a ratio of 1:10 by weight reaction medium. The SOPBIs prepared by the post-sulfonation method showed good solubility in dimethyl sulfoxide (DMSO), high thermal stability, good film forming ability and excellent mechanical properties. Cross-linked SOPBI membranes were successfully prepared by thermal treatment of phosphoric acid-doped SOPBI membranes at 180 °C in vacuo for 20 h and the resulting cross-linked membranes showed much improved water stability and radical oxidative stability in comparison with the corresponding uncross-linked ones, while the proton conductivity did not change largely. Highly proton conductive (150 mS cm−1, 120 °C in water) and water stable SOPBI membrane was developed.  相似文献   

17.
The purity of the disulfonated monomer, 3,3′-disulfonated-4,4′-dichlorodiphenyl sulfone (SDCDPS), is very important for obtaining high molecular weight disulfonated poly(arylene ether sulfone) random or block copolymers, which are promising candidates for proton exchange membrane (PEM) fuel cells. For commercialization purposes, direct use of unrecrystallized SDCDPS monomer with known purity in the copolymerization favorably influences its economics relative to the traditional recrystallization purification process. In this paper, a novel method to characterize the purity of the prepared unrecrystallized SDCDPS has been developed using UV–vis spectroscopy. The purity of the comonomer was determined from a Beers Law calibration curve developed using a highly purified SDCDPS sample. High molecular weight poly(arylene ether sulfone) random copolymers, based on this unrecrystallized SDCDPS monomer, 4,4′-dichlorodiphenyl sulfone (DCDPS), and 4,4′-biphenol monomers, were successfully synthesized. The molecular weight obtained from gel permeation chromatography (GPC) (Mn > 45 kg mol?1) was high enough to allow tough films for PEMs to be solvent cast. This confirmed that the purity characterization method was relatively accurate and applicable. The effect of storage and drying time of SDCDPS were also studied using Beer's Law plots.  相似文献   

18.
Zhiming Qiu  Suobo Zhang 《Polymer》2005,46(5):1693-1700
A novel method for the preparation of 2,2′-diphenoxy-4,4′,5,5′-biphenyltetracarboxylic dianhydride have been investigated. This new dianhydride contains flexible phenoxy side chain and a twist biphenyl moiety and it was synthesized by the nitration of an N-methyl protected 3,3′,4,4′-biphenyltetracarboxylic dianhydride and subsequent aromatic nucleophilic substitution with phenoxide. The overall yield was up to 75%. The dianhydride was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The polyimide properties such as inherent viscosity, solubility, UV transparency and thermaloxidative properties were investigated to illustrate the contribution of the introduction of phenoxy group at 2- and 2′-position of BPDA dianhydride. The resulting polyimides possessed excellent solubility in the fact that the polyimide containing rigid diamines such as 1,4-phenylenediamine and 4,4′-oxydianiline were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide and chloroform. The glass-transition temperatures of the polymers were in the range of 255-283 °C. These polymers exhibited good thermal stability with the temperatures at 5% weight loss range from 470 to 528 °C in nitrogen and 451 to 521 °C in air, respectively. The polyimide films were found to be transparent, flexible, and tough. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 105-168 MPa, 15-51%, 1.87-2.38 GPa, respectively.  相似文献   

19.
Pentafluorophenyl sulfone was prepared by oxidation of pentafluorophenyl sulfide. Ethynyl terminated fluorinated poly(arylene ether sulfone) (EFPAESO) was synthesized via nucleophilic aromatic substitution from 4,4′-(hexafluoroisopropylidene) diphenol or 4,4′-(trifluoromethylphenylisopropylidene) diphenol with an excess of pentafluorophenyl sulfone, followed by reaction with 3-ethylnylphenol. The molecular weights (Mns) of the polymers determined by GPC with polystyrene standard were in the range of 6,400-17,200 and polydispersities (Mw/Mns) were in the range of 2.25-3.19. This EFPAESO showed very high thermal stability up to 479 °C for 5% weight loss in TGA in air. Tg of the polymer was changed from 148 to 196 °C after curing. The cured films showed good chemical resistance and high thermal-stability. At 1550 nm wavelength, the refractive indices of the copolymer films were in the range of 1.5037-1.5504 and birefringences were in the range of 0.0021-0.0025. The optical loss for EFPAESO was less than 0.37 dB/cm at 1550 nm wavelength.  相似文献   

20.
A new high-performance material, poly(sulfone-imide) was prepared by Ni(0)-catalyzed coupling of aromatic dichlorides containing imide structure and 4,4'-dichlorodiphenylsulfone. The copolymers were produced with high yield and moderate to high inherent viscosities of 0.52-1.13 dL/g. Wide-angle X-ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as N-methyl-2-pyrrolidinone(NMP) and N,N-dimethylacetamide (DMAc). These polysulfone-imides had glass-transition temperatures between 317 and 345 °C and 10% weight loss temperatures in the range of 450-476 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from cresol solution, had a tensile strength range of 21-158 MPa and a tensile modulus range of 2.1-3.3 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号