首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tomohiro Hirano 《Polymer》2005,46(21):8964-8972
The polymerization of divinylbenzene (DVB) with dimethyl 2,2′-azobisisobutyrate (MAIB) was conducted at 70 and 80 °C in benzene in the presence of nitrobenzene (NB) as a retarder. When the concentrations of DVB, MAIB, and NB were 0.45, 0.50, and 0.50 mol/l, respectively, the polymerization proceeded without any gelation to yield soluble polymers. The polymer yield (up to 65%) and the molecular weight (Mn=1.5-4.2×l04 at 70 °C and 1.3-3.9×l04 at 80 °C) increased with time. The polymer formed in the polymerization at 80 °C for 4 h consisted of the DVB units with (4 mol%) and without double bond (41 mol%), methoxycarbonylpropyl group as MAIB-fragment (48 mol%), and NB unit (7 mol%). Incorporation of such a large number of the initiator-fragments as terminal groups in a polymer molecule indicates that the polymer is of a hyperbranched structure. The polymer showed an upper critical solution temperature (40 °C on cooling) in an acetone-water [14:1 (v/v)] mixture. The results of MALLS and viscometric measurements and TEM observation supported that the polymers formed in the present polymerization have a hyperbranched structure. The polymerization system at 70 °C involved an ESR-observable nitroxide radical formed by the addition of polymer radical to the nitro group of NB. The polymerization was kinetically investigated in dioxane. The initial polymerization rate (Rp) at 70 °C was expressed by Rp=k[MAIB]0.5[DVB]0.9[NB]−0.4. The kinetic results were explained on the basis of the reversible addition of polymer radical to NB and the termination between the polymer radical and the nitroxide radical. The overall activation energy of the polymerization was 27.8 kcal/mol.  相似文献   

2.
Wen-Ju Xu 《Desalination》2009,249(1):139-256
The complexes of hydroxycitronellal (o-aminobenzoic acid) copper(II) (Cu(II)-HXAB) and salicylaldehyde (o-aminobenzoic acid) copper(II) (Cu(II)-SHAB) were used as neutral carriers in PVC-based membrane ion-selective electrodes. The electrode based on Cu(II)-HXAB exhibited near-Nernstian potential response to thiocyanate (SCN) in a linear range of 1.0 × 10− 6 to 1.0 × 10− 1 M with a detection limit of 8.5 × 10− 7 M and a slope of − 57.3 mV/decade in 0.01 M phosphate buffer solution (pH 5.0). The electrode exhibited high selectivity to SCN over other tested anions with an anti-Hofmeister selectivity sequence. The selectivity behavior might be discussed in terms of UV-Vis spectrum and infrared spectrum. The transfer process of thiocyanate across the membrane interface was investigated by making use of the AC impedance technique. The electrode containing Cu(II)-HXAB could be applied to thiocyanate analysis in waste water with satisfactory results.  相似文献   

3.
Porous poly(styrene-co-divinylbenzene) resins functionalized with catechol were prepared in two different ways. Catechol was either grafted on commercial Amberlite® XAD-4 resin via a reduced imine and diazo bridges or incorporated by direct copolymerization of divinylbenzene with dimethoxystyrene followed by deprotection of the methoxy groups. The efficiency of functionalization was evidenced by pyrolysis coupled with gas phase chromatography and infra-red spectroscopy. The amount of incorporated catechol inside the different resins was determined by acido-basic back titration and varies between 0.27 and 1.38 mmol/g of resin. Grafting resulted in a decrease of the surface area due to the blocking of some connections between the mesopores. For synthesized copolymers, high contents of divinylbenzene monomer led to high surface areas. Comparing metal retention properties of both kind of materials towards Pb(II), Cu(II), Ni(II) and Cd(II) ions proved the equivalence of these sorbents. At low metal concentration, interactions with the sorbents seem to be non specific whereas at higher concentration catechol is responsible for the retention properties. Since the synthesis of copolymers is easier than the grafting of sorbents, it appears to be a more attractive procedure to obtain chelating sorbents.  相似文献   

4.
Durairaj Baskaran 《Polymer》2003,44(8):2213-2220
Hyperbranched polymers were synthesized using anionic self-condensing vinyl polymerization (ASCVP) by forming ‘inimer’ (initiator within a monomer) in situ from divinylbenzene (DVB) and 1,3-diisopropenylbenzene (DIPB) using anionic initiators in THF at −40 °C. The reaction of equimolar amounts of DVB and nBuLi results in the formation of hyperbranched poly(divinylbenzene) through self-condensing vinyl polymerization (SCVP). The hyperbranched polymers were invariably contaminated with small amount of gel (<15%). No gelation was observed when using DIBP with anionic initiators. The presence of monomer-polymer equilibrium in the SCVP of DIPB restricts the growth of hyperbranched poly(DIPB). The inimer synthesized from DIPB at 35 °C undergoes intermolecular self-condensation to different extent depending on the nature of anionic initiator at −40 °C. The molecular weight of the hyperbranched polymers was higher when DPHLi was used as initiator. A small amount of styrene ([styrene]/[Li+]=1) was used to promote the chain growth by inducing cross-over reaction with styrene, and subsequent reaction of styryl anion with isopropenyl groups of inimer/hyperbranched oligomer. The hyperbranched polymers were soluble in organic solvents and exhibited broad molecular weight distribution (2<Mw/Mn<17).  相似文献   

5.
In this work, catalysts with acid and superabsorbent properties were obtained by sulfonation of expanded polystyrene and used to promote the esterification of oleic acid with ethanol. The prepared superabsorbent polymers (SAP) showed high concentration of active sulfonic acid sites (0.7-5.9 mmol acid sites g−1) and high water absorption capacity (445-900 gwater g−1). It was observed that the catalytic activity increased with the number of acid site and water absorption capacity. Turnover frequencies suggested that the catalytic activity depends on the accessibility/diffusion processes determined by the crosslinks in the polymer. Commercial sulfonic acid resins and polyacrylate based superabsorbent polymers showed very low activities compared with the SAP produced. The SAP also showed higher activity compared to the homogeneous catalyst p-toluenesulfonic acid. The higher activity of the prepared SAP is discussed in terms of the acidity of sulfonic groups combined with the water absorption which shifts the esterification equilibrium.  相似文献   

6.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

7.
A novel dithiomacrocycle (4-phenyl-11-decanoyl-1,7-dithia-11-azacyclotetradecane-4-sulfide) has been synthesized and used as a new ionophore in order to develop a plasticized poly(vinyl chloride) membrane for copper ion detection. The performance of these novel planar copper(II)-selective potentiometric microelectrodes was investigated using potentiometric measurements. The developed microelectrodes exhibits a good linear response of 29.5 ± 1 mV per decade within the concentration range of 1.0 × 10−6 to 1.0 × 10−2 M (r = 0.9995) of Cu2+. The detection limit was determined as 5.62 × 10−7 M and the selectivity coefficients for possible interfering cations were evaluated. The microelectrodes are suitable for use with aqueous solutions of pH 3.5-6.0 and were found to be insensitive to the nature of the anions used in the sample.  相似文献   

8.
Chelating resins for mercury adsorption were prepared by grafting polyacrylamide chains onto styrene–divinylbenzene (Sty–DVB) copolymers by applying gamma radiation. Sty–DVB copolymers were synthesized by aqueous suspension polymerization employing different synthesis conditions. The copolymers were characterized by apparent density, surface area, pore size distribution and swelling capacity. The copolymers were irradiated using a 60Co-γ source at room temperature in the presence of acrylamide solution in methanol. The grafting reaction was evaluated with the aid of elemental analysis, FTIR and thermogravimetric analysis (TGA). Hg(II) uptake measurements were carried out in batch experiments. The results showed that these resins can be successfully used for Hg(II) adsorption at ppm levels. The porosity degree of the copolymers influences the grafting yield as well as the Hg(II) complexation capacity of the chelating resins.  相似文献   

9.
Under optimized synthesis conditions, very large area uniform SnO2 nanofibers consisting of orderly bonded nanoparticles have been obtained for the first time by thermal pyrolysis and oxidization of electrospun tin(II)2-ethylhexanoate/polyacrylonitrile (PAN) polymer nanofibers in air. The structure and morphology were elaborated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The SnO2 nanofibers delivered a reversible capacity of 446 mAh g−1 after 50 cycles at the 100 mA g−1 rate and excellent rate capability of 477.7 mAh g−1 at 10.0 C. Owing to the improved electrochemical performance, this electrospun SnO2 nanofiber could be one of the most promising candidate anode materials for the lithium-ion battery.  相似文献   

10.
In this work, a novel nano-sulfur/MWCNTs composite with modified multi-wall carbon nano-tubes (MWCNTs) as sulfur-fixed matrix for Li/S battery is reported. Based on different solubility of sulfur in different solvents, nano-sulfur/MWCNTs composite was prepared by solvents exchange method. The composite was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The modified MWCNTs are considered that not only acts as a conducting material, but also a matrix for sulfur. The electrochemical performance of the nano-sulfur/MWCNTs composite was tested. The results indicated that nano-sulfur/MWCNTs composite had the specific capacity of 1380 mAh g−1, 1326 mAh g−1 and 1210 mAh g−1 in the initial cycle at 100 mA g−1, 200 mA g−1 and 300 mAh g−1 discharge rates respectively, and remained a reversible capacity of 1020 mAh g−1, 870 mAh g−1 and 810 mAh g−1 after 30 cycles. The electrochemical performances confirm that the modified MWCNTs as sulfur-fixed matrix show better ability than any other carbon in cathode of Li/S batteries that had been reported.  相似文献   

11.
Specific selectivity toward different heavy metal ions could be introduced into self-assembled monolayers (SAMs) by ion imprinting. In the mixed solution, good response toward mercury ions could be obtained on mercury ions imprinted SAMs, the copper ions imprinted SAMs presented good selectivity toward copper ions, while on lead ions imprinted SAMs, significantly higher insertion of lead ions than mercury and copper ions were observed. Linear calibration plots were obtained for each heavy metal ion and the regression equations were: [Hg(II)]/(10−6 M), [Cu(II)]/(10−6 M) and [Pb(II)]/(10−6 M) for mercury, copper and lead ions, respectively. The detection limits were determined to be: 1.46×10−8 M for Hg(II), 3.73×10−8 M for Cu(II) and 4.34×10−8 M Pb(II). The decreases in current response for mercury, copper and lead ions in the presence of 100-fold interferential ions were: 3.37%, 9.16% and 7.60%, respectively. Acceptable recoveries were obtained in mixed solutions at both high and low concentrations.  相似文献   

12.
Liwen Ji 《Electrochimica acta》2010,55(5):1605-7699
Copper-loaded carbon nanofibers are fabricated by thermally treating electrospun Cu(CH3COO)2/polyacrylonitrile nanofibers and utilized as an energy-storage material for rechargeable lithium-ion batteries. These composite nanofibers deliver more than 400 mA g−1 reversible capacities at 50 and 100 mA g−1 current densities and also maintain clear fibrous morphology and good structural integrity after 50 charge/discharge cycles. The relatively high capacity and good cycling performance of these composite nanofibers, stemmed from the integrated combination of metallic copper and disordered carbon as well as their unique textures and surface properties, make them a promising electrode candidate for next-generation lithium-ion batteries.  相似文献   

13.
Sen Zhao 《Electrochimica acta》2010,55(12):3891-3896
Nanosized CaSnO3 is synthesized by a hydrothermal process and characterized by X-ray diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM). The SEM observation shows the sample has a porous flowerlike morphology. The electrochemical results exhibit that the stable and reversible capacity of 547 mAh g−1 is obtained after 50 cycles at 60 mA g−1 (0.1 C) and the corresponding charge capacity is determined to be 316 mAh g−1 at the current density of 2.5 C. Cyclic voltammetry and electrochemical impedance spectroscopy data are analyzed to complement the galvanostatic results. The observed excellent performance is attributed to the porous structure and large surface area of flowerlike CaSnO3.  相似文献   

14.
High quality graphene sheets were prepared from graphite powder through oxidation followed by rapid thermal expansion in nitrogen atmosphere. The preparation process was systematically investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and Brunauer-Emmett-Teller (BET) measurements. The morphology and structure of graphene sheets were characterized by scanning electron microscope (SEM) and high-resolution transmission electron microscopy (HRTEM). The electrochemical performances were evaluated in coin-type cells versus metallic lithium. It is found that the graphene sheets possess a curled morphology consisting of a thin wrinkled paper-like structure, fewer layers (∼4 layers) and large specific surface area (492.5 m2 g−1). The first reversible specific capacity of the prepared graphene sheets was as high as 1264 mA h g−1 at a current density of 100 mA g−1. Even at a high current density of 500 mA g−1, the reversible specific capacity remained at 718 mA h g−1. After 40 cycles, the reversible capacity was still kept at 848 mA h g−1 at the current density of 100 mA g−1. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage.  相似文献   

15.
The chelation behavior of poly(2‐hydroxy‐4‐acryloyloxybenzophenone) [poly(2H4ABP) or polymer I ] obtained through the free‐radical polymerization of 2‐hydroxy‐4‐acryloyloxybenzophenone monomer and for crosslinked polymers prepared from the monomer and known amounts of the crosslinker divinylbenzene (DVB) [4 mol % of DVB for polymer II, 8 mol % of DVB for polymer III, and 16 mol 16% of DVB for polymer IV ] toward the divalent metal ions Cu2+, Ni2+, Zn2+, and Pb2+ in aqueous solution was studied by a batch equilibration technique as a function of contact time and pH. The effect of the crosslinker, DVB, was also studied. The metal‐ion uptake of the polymers was determined with atomic absorption spectroscopy, and the highest uptake was achieved at pH 7.0 for polymers I, II, III, and IV. The selectivity and binding capacity of the resins toward the investigated divalent metal ions are discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

16.
The Chinese loess was proved a promising adsorbent for Zn(II) removal from aqueous solution with adsorption capacities at 70.2-83.2 mg g− 1 at 15-45 °C. Batch tests were conducted to evaluate the factors affecting the removal efficiency, of which the pH, temperature and initial Zn concentration all found in positive relevance to the increase of Zn(II) removal efficiency except for the slurry concentration. The uptake of Zn(II) on Chinese loess was considered as ion-exchange adsorption based on the calculated adsorption energy at − 12.8 to − 16.18 kJ mol− 1 by D-R isothermal adsorption model. The adsorption kinetics follows the pseudo-second-order kinetics and the equilibrating duration was found to be > 24 h. Thermodynamic investigation shows that the enthalpy and entropy changes during adsorption are in the range of 18.27-47.83 kJ mol− 1 and 52.7-129.6 J mol− 1 K− 1, respectively. The predicted Gibb's free energies were in the range of − 5.97-3.09 kJ mol− 1, indicating that the adsorption was in favor of higher temperature and lower initial Zn(II) concentration. The optimal Zn(II) removal efficiency could be obtained under the following conditions: low or intermediate Zn(II) concentration, long reaction time, high temperature and initial pH > 3.0.  相似文献   

17.
Caijin Huang  Zengling Yang  Xian Liu 《Fuel》2009,88(1):163-168
The use of near infrared reflectance spectroscopy (NIRS) to predict minerals concentration (K, Na, Ca, Mg, Fe) in straw samples was investigated in this study. A total of 222 straw samples were collected in rural area of most provinces in China. Two types of straw samples were prepared, directly cut specimens and oven-dried, milled specimens. The spectra of two kinds of samples were employed to correlate with minerals concentration. Different spectral pre-treatments and regression methods were trialled to optimize the calibration. Coefficient of determination in prediction and standard error of prediction (SEP) were 0.69, 0.54, 0.73, 0.79, 0.41 and 3.77 mg g−1, 0.69 mg g−1, 0.58 mg g−1, 0.31 mg g−1, 0.11 mg g−1 for directly cut straw; 0.85, 0.70, 0.82, 0.85, 0.63 and 2.35 mg g−1, 1.46 mg g−1, 0.47 mg g−1, 0.27 mg g−1, 0.13 mg g−1 for dried milled samples, respectively.  相似文献   

18.
Wahyudiono  Motonobu Goto 《Fuel》2009,88(9):1656-1479
Supercritical water has been focused on as an environmentally attractive reaction media where organic materials can be decomposed into smaller molecules. The reaction behavior of lignin model compound was studied in near- and supercritical water with a batch type reactor. Catechol was used as a model compound for aromatic rings in lignin. The reaction was carried out at temperatures of 643-693 K at various pressures under an argon atmosphere. The chemical species in the aqueous products were identified by gas chromatography mass spectrometry (GCMS) and quantified using high performance liquid chromatography (HPLC). The effect of pressure and reaction time on the conversion process of catechol was presented. The main products from the conversion of catechol was phenol and the value of global rate constant for catechol conversion (k) is 3.0 × 10−4-11.0 × 10−4 min−1.  相似文献   

19.
The electroreduction of Fe(II) and Nd(III) in MClx-acetamide-urea-NaBr-KBr were studied by cyclic voltammetry and chronoamperometry. The reduction of Fe(II) to Fe is an irreversible process, the value of αnα of the electrode reaction was calculated to be 0.31 and the diffusion coefficient of Fe(II) was calculated to be 9.53 × 10−7 cm2 s−1 at 343 K. Nd(III) cannot be reduced alone in urea melt, but Nd-Fe can be codeposited by induced codeposition. The composition of Nd-Fe film varies with the Nd(III)/Fe(II) molar ratio, at the potential of −1.25 V the maximum content of Nd in Nd-Fe film is 60.4 wt%. The morphology of Nd-Fe film was investigated by SEM and AFM. Nd-Fe film comprises of nanoparticles with the size about 100-200 nm. X-ray diffraction (XRD) shows it is amorphous. After heat-treatment at 1173 K the crystal Nd2Fe17 phase can be formed. The magnetic properties of the Nd-Fe films were determined using hysteresis loops, at 5 K the coercive field Hc of Nd (62.6 wt%)-Fe amorphous film is 1225 Oe, the remanent magnetization MR and the saturation magnetization MS are 5.15 and 15.80 emu g−1, respectively.  相似文献   

20.
The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen = N,N′-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L−1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4 V vs. SCE. After cycling the modified electrode in a 0.50 mol L−1 KCl solution, the estimated surface concentration was found to be equal to 2.2 × 10−9 mol cm−2. This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9 V vs. SCE. However, a significant decrease in the overpotential (+0.45 V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45 V) at the sensor was linear in the 4.0 × 10−6 to 6.9 × 10−5 mol L−1 concentration range and the concentration limit was 1.2 × 10−6 mol L−1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号