首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Thermoplastic natural rubber nanocomposites based on epoxidized natural rubber (ENR) and polypropylene blends at a fixed blend ratio of 50/50 wt% reinforced with small amount (2.5 wt%) of nanosilica (SiO2) were prepared by melt‐mixing through three different incorporation sequences in an internal mixer. The effects of incorporation techniques on morphology, crystallization behavior, mechanical properties, dynamic, rheological characteristics, and thermal resistance of thermoplastic natural rubber (TPNR) nanocomposites were investigated. It was found that the dispersion of nanosilica in TPNRs was significantly dependent on the incorporation sequence. In the case where SiO2 was premixed in ENR before blending with polypropylene (PP), the final morphology showed the good dispersion of SiO2 in ENR phase, while the SiO2 particles were localized near the PP interface when SiO2 was premixed the in PP first. Whereas, when the three components were simultaneously mixed, the SiO2 particles were mainly dispersed in the PP phase. It was also found that the improvements of Young's modulus, tensile strength, damping behavior, and thermal stability of TPNR nanocomposites were more pronounced when the SiO2 particles localized in ENR phase. By contrast, the presence of SiO2 particles in PP domain either near the interface or inside the PP phase affected the reduction in crystallinity of PP phase and showed a negative effect on mechanical properties due to the poor interface interaction between PP and SiO2 particles. POLYM. COMPOS., 33:1911–1920, 2012. © 2012 Society of Plastics Engineers  相似文献   

3.
Nanosilica (SiO2) is used as a reinforcing filler in PP/elastomer thermoplastic polyolefin (TPO) blends containing ethylene‐octene polyolefin elastomer (POE), ethylene‐propylene rubber (EPR), and maleated EPR. The localization and dispersion of the filler are controlled by adding maleated derivatives to the matrix or the dispersed phase. A separated morphology, consisting of SiO2 residing in the PP matrix, is necessary to achieve improvements in modulus. Filled TPOs containing POE have the best performance and exhibit improved moduli while retaining high values of elongation. J. VINYL ADDIT. TECHNOL., 13:147–150, 2007. © 2007 Society of Plastics Engineers  相似文献   

4.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   

5.
Modified and nonmodified blends of linear low-density polyethylene (PE) and polypropylene (PP) form separated phases of crystalline PP and PE. They form spherulitic crystals in the core, but highly oriented nonspherulitic phases at the skin of injection molded test bars. The dimension of the spherulites decreases with increasing PE content within the blends. Crystallization behavior of both crystalline phases is influenced by the other phase. The crystallization temperature of PP is increased in the presence of the compatibilizer. Transmission electron micrographs of blends modified by poly(styrene-block-ethylene/butylene) (SEBS) and stained by OsO4 showed co-continuous lamellar structure of the blends with a polypropylene phase containing the majority of the modifier. Smaller portions of the modifier can be found on the surface of the two olefinic phases as dispersed spheres, with an average diameter of 50–90 nm. The lamellar structure is independent of the spherulitic structure, and interpenetrates the spherulites. The conclusion of this study is that this block copolymer, while improving the physical properties of the blends, is not a true compatibilizer of the system according to the conventional terminology of physical chemistry.  相似文献   

6.
A novel macromolecular compatibilizer, styrene-ethylene-propylene-styrene (SEPS) with high content of styrene, was investigated for the purpose of improving the compatibility of PP (polypropylene)/PC (polycarbonate)/POE (ethylene-octene copolymer) blends. SEPS shows a remarkable compatibilizing effect since it has a particular structure with the EP-compatible aliphatic segments, which is well miscible with the nonpolar PP and olefinic elastomer POE domains, and S-chain segments which exhibit strong affinity with PC because of the similar molecular structure. Its compatibilizing effect was examined in terms of the mechanical, morphological, and thermal properties. The compatibilized PP-based blends represent remarkable improvement in impact strength and balanced tensile strength. When 5 wt % SEPS was added to PP/PC/POE blends (20 wt % POE), the impact strength of the blends was enhanced from 24 to 43 kJ/m2 without obvious drop in the tensile strength. Their morphologies show a decreasing and much more homogeneous size of dispersed PC and POE particles through addition of SEPS, and the fracture surface morphologies change from irregular mosaic to the mix of mosaic and striation, and finally the regularly distant striation. The special morphology structure that resulted from the effect of the compatibilizer could be a key for enhancement of toughness and balanced rigidity of the blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
This work was aimed to counteract the effect of ethylene‐α‐olefin copolymers (POE) by reinforcing the polypropylene (PP)/POE blends with high density polyethylene (HDPE) particles and, thus, achieved a balance between toughness and strength for the PP/POE/HDPE blends. The results showed that addition of HDPE resulted in an increasing wide stress plateau and more ductile fracture behavior. With the increase of HDPE content, the elongation at break of the blends increased rapidly without obvious decrease of yield strength and Young's modulus, and the notched izod impact strength of the blends can reach as high as 63 kJ/m2 at 20 wt % HDPE loading. The storage modulus of PP blends increased and the glass transition temperature of each component of the blends shifted close to each other when HDPE was added. The crystallization of HDPE phase led to an increase of the total crystallinity of the blend. With increasing HDPE content, the dispersed POE particle size was obviously decreased, and the interparticle distance was effectively reduced and the blend rearranged into much more and obvious core‐shell structure. The fracture surface also changed from irregular striation to the regularly distant striations, displaying much obvious character of tough fracture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
In this article, the phase morphology and rheological properties of polypropylene (PP)/poly(ethylene‐co‐octene) (POE) blends with a droplet‐matrix microstructure were studied by scanning electron microscopy and rheological experiments. The data were analyzed to yield the variations of rheological behavior with blend composition and insight into the microstructure of PP/POE blends. The Palierne's emulsion type model was used to extract information on rheological properties, and the interfacial tensions between the PP and POE were determined by fitting the experimental data with this model. The results indicated that the interfacial tensions were shown to depend on blend composition and temperature. Rheological properties of PP/POE blends were investigated in a systemic way with varying shear histories. The results showed that shear history had an important effect on the rheological properties of the blends due to the dispersed phase (POE) domains refined with increasing preshear rate and preshear time. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

9.
Two grafted ethylene–octene copolymers [POEs; i.e., POE‐g‐maleic anhydried (MAH) and aminated POE (denoted by POE‐g‐NH2) were used as compatibilizers in immiscible blends of thermoplastic polyurethane (TPU) and POE. The effects of the compatibilizers on the dynamic rheological properties and morphologies of the TPU/POE blends were investigated. The characteristic rheological behaviors of the blends indicated that the strong interactions between the two phases were due to the compatibilization. Microstructural observation confirmed that the compatibilizers were located at the interface in the blends and formed a stable interfacial layer and smaller dispersed phase particle size. Compared with POE‐g‐MAH, POE‐g‐NH2 exhibited a better compatibilization effect in the TPU/POE blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Carbon black (CB) containing polypropylene/nylon (PP/Ny) blends, processed slightly below the melting temperature (Tm) of the dispersed Ny phase, leads to formation of fibrillar Ny phase and electrically anisotropic systems. CB containing PP/Ny blends were compounded (twin screw extruder) and processed (injection molding) slightly below the Tm of dispersed Ny phase at different blending sequences. To establish structure–property relationships scanning electron microscopy, high resolution scanning electron microscopy, differential scanning calorimeter were used and electrical properties were also studied. Addition of CB to binary PP/Ny blends, processed below the Ny Tm, altered the Ny fibrillation process forming an irregular continuous phase, containing the CB particles, rather than the fibrils formed in the PP/Ny blends. Yet, upon changing the processing sequence, i.e., compounding PP and CB and then adding Ny in the injection molding stage, Ny fibrils were attained, maintaining phase continuity, oriented in the flow direction and CB particles preferentially located on their surfaces. Blends exhibiting a fibrillar Ny network covered by CB particles exhibited electrical anisotropy. The Ny fibrils exhibited an additional higher crystalline melting peak and molecular orientation. The composites are conductive in the Ny fibril direction, while insulating in the perpendicular direction. Once the CB is located within both, the Ny and the PP matrix the electrical behavior is isotropic. POLYM. ENG. SCI., 46:1250–1262, 2006. © 2006 Society of Plastics Engineers  相似文献   

11.
The objective of this work was to investigate the effect of elastomer polarity on phase structure and mechanical properties of PP nanocomposites. The nonpolar and polar elastomers studied were polyethylene octene (POE) and polyethylene octene grafted maleic anhydride (POEgMAH), respectively. The results from mechanical studies showed that the POEgMAH-toughened polypropylene nanocomposites have higher Izod impact strength but lower tensile and flexural properties than the unmaleated ones. X-ray diffraction (XRD) was used to characterize the formation of nanocomposites. XRD studies revealed that intercalated rubber-toughened PP nanocomposites (RTPPNC) had been successfully prepared where the macromolecule segments PP were intercalated into the interlayer space of organoclay. XRD also indicated that the incorporation of polar POEgMAH elastomers into PP nanocomposites contribute to a better intercalation effect and formed a more exfoliated combinations structure compared to POE. Scanning electron microscope (SEM) was used for the investigation of the phase morphology and rubber particle size and particle-size distribution. SEM study revealed a two-phase morphology where POE as droplets dispersed finely and uniformly in the PP matrix. The POEgMAH-toughened PP nanocomposites shows a much finer dispersion of elastomer particles than POE-toughened PP nanocomposites.  相似文献   

12.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

13.
BACKGROUND: A new processing method for polypropylene–untreated precipitated silica (PP/SiO2) composites based on the incorporation of a second polymer phase of polyamide 6 (PA6) is presented and compared with a more classic one making use of compatibilizers: glycerol monostearate (GMS), ethylene acrylic acid ionomer (IAAZE) and maleic anhydride grafted polypropylene (MA‐graft‐PP). The effects of processing methods and conditions on the microstructure and properties of PP/SiO2 composites prepared by melt compounding are investigated with a view to reduce the size of aggregates of silica from the micrometre to the nanometre scale and to improve the link between filler and matrix. RESULTS: On the one hand, the presence of GMS and IAAZE compatibilizers significantly improves the dispersion of the silica particles. On the other hand, when using a PA6 second phase, the SiO2 particles are dispersed in PA6 nodules. Within these nodules, SiO2 appears dispersed at the nanoscale but with larger particles (‘aggregates’) of about 200 nm. Significant improvements in tensile strength and modulus are obtained using MA‐graft‐PP compatibilizer. An increase in impact strength is observed in the case of GMS compatibilizer. Thermal parameters indicate also that silica plays the role of nucleation agent for PP matrix. All improvements (tensile strength, modulus and impact strength) increase with the addition of compatibilized PA6 second phase. CONCLUSION: By the incorporation of masterbatch of silica in PA6 as a second polymer polar phase, a successful new production method for PP/SiO2 nanocomposites has been developed. Interestingly, this method does not require any (expensive) pre‐treatment of the silica. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
The present work describes the anisotropy and instability observed upon the formation of co-continuous phase morphologies in model polystyrene/polypropylene melt-extruded blends. Uncompatibilized and reactively compatibilized blends using amino-terminated polystyrene, PS-NH2, and maleic anhydride grafted polypropylene, PP-MAh, reactive precursors were investigated. Differences in phase morphology are discussed based on the viscoelastic properties of the components used, the blend composition and, the type and content of the compatibilizer precursor employed. As expected, for the same polystyrene grade at a concentration in the blend below 20 wt%, a polypropylene matrix having a higher viscosity enables the formation of a more co-continuous phase morphology than a less viscous one, as quantified by solvent extraction. The co-continuous phase morphology developed was found to exhibit a highly elongated structure upon melt flow through the die of the extruder. Isotropic co-continuity, observed inside the barrel of extruder, was transformed into anisotropic phase co-continuity in the form of interconnected infinite strands of the minor phase highly oriented in the extrusion direction.When the blends were thermally annealed, a 50/50 PS/PP co-continuous blend exhibits a substantial phase coarsening from micro- to millimeter scale without alteration of the phase co-continuity. The reactive compatibilization of the polypropylene and the polystyrene phases using 5 wt% PP-graft-PS, reactively in situ generated was able to significantly retard the phase evolution process.  相似文献   

15.
Elastomer ethylene–butylacrylate–glycidyl methacrylate (PTW) containing epoxy groups were chosen as toughening modifier for poly(butylene terephthalate) (PBT)/polyolefin elastomer (POE) blend. The morphology, thermal, and mechanical properties of the PBT/POE/PTW blend were studied. The infrared spectra of the blends proved that small parts of epoxy groups of PTW reacted with carboxylic acid or hydroxyl groups in PBT during melt blending, resulting in a grafted structure which tended to increase the viscosity and interfere with the crystallization process of the blend. The morphology observed by scanning electron microscopy revealed the dispersed POE particles were well distributed and the interaction between POE and PBT increased in the PBT/POE/PTW blends. Mechanical properties showed the addition of PTW could lead to a remarkable increase about 10‐times in impact strength with a small reduction in tensile strength of PBT/POE blends. Differential scanning calorimetry results showed with increasing PTW, the crystallization temperature (Tc) and crystallinity (Xc) decreased while the melting point (Tm) slightly increased. Dynamic mechanical thermal analysis spectra indicated that the presence of PTW could improve the compatibility of PBT/POE blends. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40660.  相似文献   

16.
A series of polymer blends were designed and manufactured. They are composed of three phases: polypropylene (PP), polyamide-6 (PA6) and polyethylene-octene elastomer (POE) grafted with maleic anhydride. The weight fraction of PA6 was adjusted from 0 to 40% by increments of 10%, and the weight fraction of POE was systematically half that of PA6. The morphology, essentially made of PA6 particles dispersed in the PP matrix, was characterised by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In the extruded plates prepared with the blends, the shape of the dispersed PA6 particles showed an elongated ellipsoidal shape, whose aspect ratio increased somehow with alloying content. The POE modifier was observed both as a thin interlayer (less than 100 nm thickness) at the PP/PA6 interface, and as a few isolated particles. The elastic modulus and yield stress in tension are nearly constant for PP and blends. By contrast, the notched Izod impact strength increases very much with alloying content. This remarkable effect is interpreted in terms of POE interphase cavitation, enhanced plastic shear deformation and resistance of PA6 particles to crack propagation.  相似文献   

17.
Christian G'Sell  Shu-Lin Bai 《Polymer》2004,45(17):5785-5792
Plastic deformation upon stretching was investigated in ternary blends of polypropylene, polyamide 6 and maleic anhydride-grafted polyethylene-octene elastomer (PP/PA6/POE). A novel video-controlled tensile testing method was utilized, which allows recording simultaneously axial strain, axial stress and volume strain while axial strain-rate is regulated at a constant value even after necking has begun. Increasing the alloying content modifies drastically the original stress-strain properties of PP: yield softening is suppressed and strain hardening is increased. As for the volume strain, which is representative of the overall cavitation process, it is found to decrease with increasing alloying content (apart from a small increase for low alloying content). This unexpected result indicates that the finely dispersed cavities nucleated under tension at the POE interphase of PA6 particles and at isolated POE particles favor the profuse development of plastic shear bands in the PP matrix. As such, it can be considered as an experimental evidence of the synergistic effect of cavitation and shear banding in a structural polymer.  相似文献   

18.
In this study, polypropylene/ethylene–octene copolymer (PP/POE) blends, PP/talc, and PP/POE/micro‐talc (MT) composites were fabricated using a twin screw. To estimate the performances of the PP/POE blends, PP/talc, and PP/POE/MT composites, mechanical properties, heat deflection temperature (HDT), thermomechanical analysis, and isothermal crystallization characterization were conducted. Incorporating talc particles increased the tensile strength, flexural properties, and HDT of the PP matrix, but reduced the elongation at break and notched impact strength. The inclusion of POE elastomers in the PP matrix yielded the opposite effect on PP/talc composites. PP/POE/MT composites provide a compromise that improves both the flexural properties and notched impact strength. Moreover, the inclusion of talc particles in PP/POE blends induced heterogeneous nucleation and considerably reduced the crystallization time. Consequently, the time required for processing was also greatly reduced. POLYM. COMPOS., 36:69–77, 2015. © 2014 Society of Plastics Engineers  相似文献   

19.
Attempts were made to study the effect of reactive compatibilization via Friedel–Crafts alkylation reaction, using AlCl3 as a catalyst, on rheology, morphology, and mechanical properties of polypropylene/polystyrene ( PP/PS) blends in the presence of an organoclay (Cloisite 15A). During the reactive compatibilization process, PS showed much more degradation than that of PP in the presence of AlCl3. It was found that the effect of generation of PP‐g‐PS copolymer at the interface of the PP/PS blend dominates the effects of degradation of PS and PP phases, which manifested itself by increased toughness as well as uniform dispersion of the dispersed PS particles in the PP matrix. Generation of PP‐g‐PS copolymer was confirmed by using Fourier‐transform infrared analysis. By using rheological and X‐ray diffraction analyses, it was shown that the clay had higher affinity to PS than that of PP. It was also shown that the clay located at the interface of PP and PS phases, leading to increased relaxation time of the deformed PS dispersed particles, exhibited higher dispersion in PP/PS blend, which resulted in higher ductility of the blend. By using the results of rheological studies, it was concluded that during reactive compatibilization of the blend nanocomposite, the clay migrated into the dispersed PS phase, which was confirmed by scanning electron microscopy analysis. It was demonstrated that the rheological studies have a reliable sensitivity to the clay partitioning and phase morphology of the studied blends and blend nanocomposites . J. VINYL ADDIT. TECHNOL., 24:18–26, 2018. © 2015 Society of Plastics Engineers  相似文献   

20.
Nanocomposites based on 70/30 (w/w) polypropylene (PP)/polyamide 6 (PA6) immiscible blends and functionalized-TiO2 nanoparticles were prepared via melt compounding. The influences of TiO2 on the morphology of nanocomposites were investigated. Scanning electron microscopy results revealed the domain size of the dispersed PA6 phase decreased in presence of functionalized-TiO2 and the TiO2 nanoparticles were preferentially located at the PA6 phase and at the interfacial region between PP and PA6, which were ascertained by differential scanning calorimetry. The functionalized-TiO2 nanoparticles played the compatibilizer for the immiscible PP/PA6 blends, increasing the interaction of the two phases in certain extent. Therefore, a clear compatibiliting effect was induced by the TiO2 in the immiscible PP/PA6 blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号