首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(ethylene terephthalate) (PET) nanofibers were prepared by irradiating a PET fiber with radiation from a carbon dioxide (CO2) laser while drawing it at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The flow velocity from the orifice was estimated by computer simulation; the fastest flow velocity was calculated to be 401 m s−1 at a chamber pressure of 6 kPa. A nanofiber obtained using a laser power of 8 W and a chamber pressure of 6 kPa had an average diameter of 193 nm and a draw ratio of about 900,000. This technique is a novel method for producing nanofibers.  相似文献   

2.
Nylon 66 nanofibers were prepared by irradiating as‐spun nylon 66 fibers with radiation from a carbon dioxide (CO2) laser while drawing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through the fiber injection orifice. The fiber diameter depended on the drawing conditions used, such as laser power, chamber pressure, laser irradiation point, and fiber supply speed. A nanofiber obtained at a laser power of 20 W and a chamber pressure of 20 kPa had an average diameter of 0.337 μm and a draw ratio of 291,664, and the drawing speed in the CO2 laser supersonic drawing was 486 m s?1. The nanofibers showed two melting peaks at about 257 and 272°C. The lower melting peak is observed at the same temperature as that of the as‐spun fiber, whereas the higher melting peak is about 15°C higher than the lower one. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40015.  相似文献   

3.
Poly(ethylene terephthalate) (PET) particles were prepared by the irradiation of PET fibers with a carbon dioxide (CO2) laser while atomizing them at supersonic velocities. A supersonic jet was generated by blowing air into a vacuum chamber through a fiber injection orifice. The fibers are melted by laser heating and atomized by the supersonic jet at the outlet of the orifice. The PET particles produced by CO2 laser supersonic atomization conducted at a laser power of 34 W and at a chamber pressure of 10 kPa have an average particle size of 0.619 μm, high circularity, and a smooth surface that is not roughened by laser ablation. The novel CO2 laser supersonic atomization technique can be used to easily prepare polymeric nanoparticles of various thermoplastic polymers using only CO2 laser irradiation without the need for solvents and additives. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40909.  相似文献   

4.
Poly(ethylene‐2,6‐naphthalate) (PEN) nanofiber was prepared by a carbon dioxide (CO2) laser supersonic drawing. The CO2 laser supersonic drawing was carried out by irradiating the laser to the as‐spun PEN fiber in a low‐temperature supersonic jet. The supersonic jet was generated by blowing off air into a vacuum chamber from a fiber supplying orifice. The flow velocity from the orifice can be estimated by applying Graham's theorem from the pressure difference between the atmospheric pressure and the pressure of the vacuum chamber. The fastest flow velocity estimated was 396 m s?1 (Mach 1.15) at a chamber pressure of 6 KPa. The nanofiber obtained at Mach 1.15 was the oriented nanofibers with an average diameter of 0.259 μm, and its draw ratio estimated from the diameters before and after the drawing reached 430,822 times. The CO2 laser supersonic drawing is a new method to make nanofiber without using any solvent or removing the second component. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Poly(p‐phenylene sulfide) (PPS) nanofibers are prepared by irradiating a PPS fiber with a carbon dioxide (CO2) laser while drawing it at supersonic speeds. A supersonic jet is generated by blowing air into a vacuum chamber through the fiber injection orifice. Nanofibers obtained at a laser power of 30 W and chamber pressure of 10 kPa exhibit an average diameter of 600 nm and a draw ratio of 110,000. Scanning electron microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction analyses are employed to investigate the relationships among the chamber pressure, fiber morphology, and crystallization behavior. The nanofibers exhibit two melting temperatures (Tm): approximately 280°C and 320°C. The endothermic peak at Tm = 280°C is ascribable to lamellar crystals and that at Tm = 320°C to the highly complete crystals, since the polymer molecular chain is highly oriented. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40922.  相似文献   

6.
Graphene nanosheets were prepared by complete oxidation of pristine graphite followed by thermal exfoliation and reduction. Polyethylene terephthalate (PET)/graphene nanocomposites were prepared by melt compounding. Transmission electron microscopy observation indicated that graphene nanosheets exhibited a uniform dispersion in PET matrix. The incorporation of graphene greatly improved the electrical conductivity of PET, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.47 vol.%. A high electrical conductivity of 2.11 S/m was achieved with only 3.0 vol.% of graphene. The low percolation threshold and superior electrical conductivity are attributed to the high aspect ratio, large specific surface area and uniform dispersion of the graphene nanosheets in PET matrix.  相似文献   

7.
X.S. Du  Y.Z. Meng  A.S. Hay 《Polymer》2004,45(19):6713-6718
An effective method for the preparation of poly(4,4′-oxybis(benzene)disulfide)/graphite nanosheet composites via in situ ring-opening polymerization of macrocyclic oligomers were reported. Completely exfoliated graphite nanosheets were prepared under the microwave irradiation followed by sonication in solution. The nanocomposites were fabricated via in situ melt ring-opening polymerization of macrocyclic oligomers in the presence of graphite nanosheets. The graphite nanosheets and resulted poly(arylene disulfide)/graphite nanocomposites were characterized with field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), tensile tester and electrical conductivity measurements. Compared with pure polymer, the electrical conductivity of the poly(arylene disulfide)/graphite nanocomposites were dramatically increased and had a value of about 10−3 S/cm for the nanocomposite containing 5 wt% graphite. The nanocomposites exhibit as both high performance polymeric material and electrically conductive material. Therefore, they show potential applications as high temperature conducting materials.  相似文献   

8.
Graphene nanosheet/polymer composites were prepared using in situ reduction-extractive dispersion technology. The morphology and microstructure of the composites were examined by scanning electron and optical microscopy. The results indicate that graphene nanosheets from the reduction of graphite oxide are about 5 nm thick and 1-3 μm in diameter. Reduction-extractive dispersion technology can effectively promote the dispersion of graphene nanosheets and consequently an excellent conductive network is formed in the matrix. The percolation threshold of the composite is about 0.15 vol.%. When the graphene nanosheet content is lower than 1.5 vol.%, the conductivity of the composites is 3-5 orders of magnitude higher than that of composites filled with graphite nanosheets from expanded graphite.  相似文献   

9.
A new process for the dispersion of graphite in the form of nanosheets in a polymer matrix was developed via in situ polymerization of monomer at the presence of sonicated expanded graphite during sonication. Graphite nanosheets prepared via powdering the expanded graphite had a thickness ranging 30-80 nm and a diameter ranging 0.5-20 μm and was an excellent nanofiller for the fabrication of polymer/graphite conducting nanocomposite. The process fabricated electrically conducting polystyrene/graphite nanosheet nanocomposite films with much lower percolation threshold and much higher conductivities than those of composites made by conventional methods.  相似文献   

10.
Uniform MoS2 nanosheets/C hybrid microspheres with mean diameter of 320 nm have been successfully synthesized via a facile one-pot hydrothermal route by sodium molybdate reacting with sulfocarbamide in d-glucose solutions. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). XRD patterns showed that the MoS2 was kept as a two-dimensional nanosheet crystal and C was retained as amorphous even after their annealing treatment at 800 °C. TEM and SEM images indicated that the MoS2 nanosheets were uniformly dispersed in the amorphous carbon. The experiment results also revealed that the appropriate amount of d-glucose had an obvious effect on the formation of uniform MoS2 nanosheets/C hybrid microspheres. A possible formation process of MoS2 nanosheets/C hybrid microspheres was preliminarily presented.  相似文献   

11.
O. Akhavan 《Carbon》2010,48(2):509-203
Graphene thin films with very low concentration of oxygen-containing functional groups were produced by reduction of graphene oxide nanosheets (prepared by using a chemical exfoliation) in a reducing environment and using two different heat treatment procedures (called one and two-step heat treatment procedures). The effects of heat treatment procedure and temperature on thickness variation of graphene platelets and also on reduction of the oxygen-containing functional groups of the graphene oxide nanosheets were studied by atomic force microscopy and X-ray photoelectron spectroscopy. While formation of the thin films composed of single-layer graphene nanosheets with minimum thickness of 0.37 nm and nearly without any functional group bonds was observed at the high temperature of 1000 °C in the one-step reducing procedure, similar high quality graphene thin films were obtained at the lower temperature of 500 °C in our two-step reducing temperature. The results also indicated possibility of efficient reduction of the graphene oxide thin films at even lower heat treatment temperatures (?500 °C).  相似文献   

12.
The synthesis of platelet carbon nanofibers (PCNFs) on a silicon substrate using chemical vapor deposition method is reported. Scanning electron microscope, high-resolution transmission electron microscopy, and Raman spectroscopy were used to characterize the nanofibers. It is found that these platelet nanofibers are of the order of 10 μm long, and most have a nearly rectangular transverse section with several hundreds nm wide and several tens of nm thick. Structure analysis reveals that the carbon layers of platelet nanofibers are parallel to each other, and have a uniform (0 0 2) orientation that is perpendicular to the fiber axis. Many faults and nanodomain have been found in the nanofibers. It is suggested that the PCNF grow in tip growth mechanism by the precipitation of carbon from the side facet of catalyst flakes.  相似文献   

13.
Novel three-dimensional (3-D) nano-/microfibrous poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by hybrid electrospinning, involving a combination of solution electrospinning and melt electrospinning. The scaffolds consisted of a randomly oriented structure of PLGA microfibers (average fiber diameter = 28 μm) and PLGA nanofibers (average fiber diameter = 530 nm). From mercury porosimetry, the PLGA nano-/microfiber (10/90) scaffolds were found to have similar pore parameters to the PLGA microfiber scaffolds. PLGA nano-/microfibrous scaffolds were examined and compared with the PLGA microfiber scaffolds in terms of the attachment, spreading and infiltration of normal human epidermal keratinocytes (NHEK) and fibroblasts (NHEF). The cell attachment and spreading of both cell types were several times higher in the nano-/microfiber composite scaffolds than in the microfibrous scaffolds without nanofibers. This shows that the presence of nanofibers enhanced the attachment and spreading of the cells on the nano-/microfiber composite scaffolds. Moreover, the nanofibers helped the cells infiltrate easily into the scaffolds. Overall, this novel nano-/microfiber structures has great potential for the 3-D organization and guidance of cells provided for tissue engineering.  相似文献   

14.
Singlewalled carbon nanotube/polyvinylalcohol composite nanofibers were electro-spun onto a silicon surface pre-patterned with trenches. These nanofibers were prepared with different loadings of SWCNTs and had radii between 20 and 40 nm. Individual fiber sections were pinned across the trenches and laterally loaded by an AFM tip to yield mechanical response curves. A simple model was exploited to extract the tensile mechanical properties from the lateral force-displacement data. Depending on the fiber composition, the tensile modulus was found to be between 3 and 85 GPa. In addition we have prepared fibers with tensile strength of up to 2.6 GPa. Such optimised fibers break at strains of ∼4% and exhibit toughness of up to 27 MJ/m3.  相似文献   

15.
Hisayoshi Ono 《Carbon》2006,44(4):682-686
High crystalline carbon nanofibers were prepared by using polymer blend technique. Naphthalene-based mesophase pitch (AR pitch) was dispersed finely in polymethylpentene matrix, spun by using a melt-blown spinning machine, stabilized at 160 °C in an oxygen atmosphere and carbonized at 900 °C in a nitrogen atmosphere. Bundles of the carbon nanofibers with ca. 100 nm in diameter were obtained after removal of polymethylpentene at the carbonization process. No impurity carbon was observed. The carbon nanofibers consisted of fine carbon crystallites with preferred orientation along the fiber axis. After heating to 3000 °C, the carbon crystallites grew drastically to have an interlayer spacing of 0.3367 nm and a crystallite thickness of 56.9 nm, respectively, with remarkable improvement of the preferred orientation of the crystallites. Advantages and disadvantages of the present method were discussed briefly.  相似文献   

16.
An electrospinning method was used to fabricate chitin nanofibous matrix for wound dressings. Chitin was depolymerized by gamma irradiation to improve its solubility. The electrospinning of chitin was performed with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a spinning solvent. Morphology of as-spun and deacetylated chitin (chitosan) nanofibers was investigated by scanning electron microscopy. Although as-spun chitin nanofibers had the broad fiber diameter distribution, most of the fiber diameters are less than 100 nm. From the image analysis, they had an average diameter of 110 nm and their diameters ranged from 40 to 640 nm. For deacetylation, as-spun chitin nanofibous matrix was chemically treated with a 40% aqueous NaOH solution at 60 or 100 °C. With the deacetylation for 150 min at 100 °C or for 1day at 60 °C, chitin matrix was transformed into chitosan matrix with degree of deacetylation (DD) ∼85% without dimensional change (shrinkage). This structural transformation from chitin to chitosan was confirmed by FT-IR and WAXD.  相似文献   

17.
Chunyi Tang  Haiqing Liu 《Polymer》2007,48(15):4482-4491
Random and alternating poly(styrene-co-maleic anhydrides) (SMAs) with respective maleic anhydride (MAh) content of 32 and 48% were synthesized through radical polymerization. SMA nanofibers with diameter down to 180 nm were generated by electrospinning from solvents acetone, dimethylformamide (DMF), and their mixtures. Fiber diameter increased dramatically when the SMA concentration in the spinning solution reached to a critical point where the SMA chains are extensively entangled. The diameter of SMA nanofiber decreased with increasing DMF content in the mixture, but beads are often accompanied as DMF content is over 50%. The optimum acetone/DMF ratio was found to be 2:1, in which continuous electrospinning was achieved and bead-free nanofibers were obtained. SMA nanofibers with MAh content of 32 and 48% were crosslinked with diethyleneglycol and subsequently hydrolyzed in NaOH/EtOH to turn SMA into crosslinked sodium form SMA (SMA-Na) hydrogel nanofiber. These hydrogel nanofibers were able to retain fiber form after immersing in water for 24 h. Their water absorption ratio was up to 37.6 and 8.2 g/g in distilled water and 0.25 N NaCl aq. solution, respectively.  相似文献   

18.
A novel method was developed for the synthesis of titanate nanosheets with high surface area. A solid-state mixture of NaOH and TiO2 was reacted at 600 °C for several minutes. The aqueous dispersion of the resulting melt was aged at room temperature for periods up to 14 days. After hydrochloric acid treatment and washing procedures, the reaction product was characterized by X-ray diffraction, Raman spectroscopy, N2-sorption and small-angle X-ray scattering measurements. The titanate compound not subjected to the aging process was amorphous and possessed a microporous framework, while the aged samples displayed nanosheet morphology and high specific surface area (396-509 m2 g−1). It was revealed that the very short heat treatment is of crucial importance for the titania-titanate phase transformation, while the aging process is needed for the morphological evolution of the titanate samples. The effects of the aging time on the structure and the morphology are discussed.  相似文献   

19.
Akihiro Suzuki  Mahomi Kishi 《Polymer》2007,48(9):2729-2736
Poly(ethylene terephthalate) (PET) nonwoven fabric was prepared from microfibers obtained by using a carbon dioxide laser-thinning method. The PET nonwoven fabric obtained was made of the endless mircofibers with a uniform diameter without droplets. The fiber diameter can be varied by controlling airflow rate into the air jet and supplying speed of an original fiber into a laser-irradiating point. The fiber diameter decreased, and its birefringence increased as the airflow rate increased and the supplying speed decreased. When the microfiber prepared by irradiating the laser operated at a power density of 4.8 W cm−2 to the original fiber supplied at Ss = 0.15 m min−1 was dragged at an airflow rate of 30 L min−1, the thinnest microfiber with a diameter of 3.6 μm was obtained.  相似文献   

20.
Tungsten oxide (WO3) nanofibers with different crystalline morphologies and various particle sizes were fabricated using an electrospinning technique. The nanofibers were prepared from mixtures of polyvinyl alcohol (PVA) and ammonium metatungstate hydrate (AMH) of various concentrations ranging from 4.2%w/v to 50.0%w/v. After calcination at 500 °C for 2 h, the nanofibers were observed to have a monoclinic crystal structure with diameters ranging from 30 to 250 nm. AMH concentration had a large influence on the resulting nanofiber morphology. Very low AMH concentration of 4.2%w/v led to the formation of WO3 nanofibers having a very large area of monocrystalline structure. Higher AMH concentrations result in polycrystalline WO3 nanofibers with joined nanoparticles along the fiber axis. The average particle size within the nanofibers increased from 29 to 66 nm as the AMH concentration increased from 8.3%w/v to 50%w/v. At these precursor concentration levels, primary particles were formed before PVA was completely burnt off, resulting in agglomeration of primary particles along the nanofiber axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号