首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ruiyuan Liu  Toshio Masuda 《Polymer》2007,48(22):6510-6518
Ornithine- and lysine-based novel N-propargylamides, N-α-tert-butoxycarbonyl-N-δ-fluorenylmethoxycarbonyl-l-ornithine-N′-propargylamide (1), N-α-tert-butoxycarbonyl-N-?-fluorenylmethoxycarbonyl-l-lysine-N′-propargylamide (2), N-α-fluorenylmethoxycarbonyl-N-δ-tert-butoxycarbonyl-l-ornithine-N′-propargylamide (3), and N-α-fluorenylmethoxycarbonyl-N-?-tert-butoxycarbonyl-l-lysine-N′-propargylamide (4) were synthesized and polymerized with a rhodium catalyst. Polymers with moderate molecular weights were obtained in good yields. Poly(1)-poly(4) showed strong Cotton effects in THF, whose sign and wavelength depended on the substituents. They were satisfactorily converted into the corresponding polymers [poly(1a)-poly(4a)] with free amino groups. Poly(1a) and poly(2a) also formed a helix, while poly(3a) and poly(4a) did not. Poly(1a) and poly(2a) decreased the CD intensity by the addition of m- and o-phthalic acids.  相似文献   

2.
Toru Katsumata 《Polymer》2008,49(12):2808-2816
The polymerization of diphenylacetylene derivatives possessing tert-amine moieties, such as triphenylamine, N-substituted carbazole and indole, was examined in the presence of TaCl5-n-Bu4Sn (1:2) catalyst. A polymer with high molecular weight (Mw = 570 × 103) was obtained in good yield by the polymerization of diphenylamine-containing monomer 1b, whereas the isopropylphenylamine derivative (1c) gave a polymer with relatively low molecular weight (Mw = 2.4 × 103). The polymerization of monomer 1d containing cyclohexylphenylamine group did not proceed; however, carbazolyl- and indolyl-containing monomers also produced polymers. Poly(1b), poly(2f) and poly(4b) could be fabricated into free-standing membranes by casting toluene solutions of these polymers. The gas permeability of poly(1b) was too low to be evaluated accurately whereas poly(4b) possessing two chlorine atoms in the repeating unit showed higher gas permeability than that of poly(1b); furthermore, poly(2f) having trimethylsilyl and 3-methylindolyl groups exhibited relatively high gas permeability (). In the cyclic voltammograms of diphenylamino group-containing polymers, poly(1b) and poly(2b), the intensities of oxidation and reduction peaks decreased more than those of carbazolyl-containing poly(2a). The molar absorptivity (?) of poly(1b) at ∼700 nm increased with increasing applied voltage in the UV-vis spectrum.  相似文献   

3.
Synthesis and properties of helical polyacetylenes containing carbazole   总被引:1,自引:0,他引:1  
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(2):467-476
Novel acetylene monomers containing carbazole with chiral menthyl and bornyl groups, 9-(1R,2S,5R)-menthyloxycarbonyl-2-ethynylcarbazole (1), 9-(1S,2R,5S)-menthyloxycarbonyl-2-ethynylcarbazole (2), 9-(1R,2S,5R)-menthyloxycarbonyl-3-ethynylcarbazole (3) and 9-(1S)-bornyloxycarbonyl-2-ethynylcarbazole (4) were synthesized and polymerized with a Rh catalyst to give the corresponding polymers [poly(1)-poly(4)] with moderate Mn value of (11.5-92.2) × 103 in good yields (77-89%). CD spectroscopic studies revealed that poly(1), poly(2) and poly(4) took predominantly one-handed helical structure in CHCl3, THF, toluene, and CH2Cl2, while poly(3) did not. Addition of methanol to CHCl3 solutions of poly(1) and poly(2) resulted in the formation of aggregates showing smaller CD signals at 275 and 320 nm. The helical structure of poly(1) and poly(2) was very stable against heating. The polymers emitted fluorescence in 0.40-2.90% quantum yields. Poly(4) exhibited an obvious oxidation peak at 1.10 V. The polymers were thermally stable below 300 °C.  相似文献   

4.
Fumio Sanda 《Polymer》2004,45(3):849-854
Polyacetylenes having carboxyl and/or amino groups in the side chain were synthesized by the polymerization of N-(2-propynyloxycarbonyl)-l-alanine (1) and l-alanine N-propargylamide (2) catalyzed with a rhodium cation complex. Poly(10.5-co-20.5) exhibited a larger CD signal than the homopolymers. The polymer mixtures obtained by the polymerization of 1 in the presence of poly(2), and those obtained by the polymerization of 2 in the presence of poly(1) showed specific rotations larger than calculated. The polymerization of propargylamine in the presence of poly(1) did not exhibit significant effect, while the polymer mixtures obtained by the polymerization of propiolic acid in the presence of poly(2) exhibited [α]D of positive sign, although poly(2) alone exhibited [α]D of negative sign.  相似文献   

5.
Chiral polymers P-1 and P-2 were prepared by the polymerization of (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-1) and (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-1) with 2,5-bis[(4-tributylstannyl)phenyl]-1,3,4-oxadiazole (M-2) via Pd(PPh3)4 catalyzed Stille coupling reaction. 1,3,4-Oxadiazole unit not only has high electron affinity, high thermal and oxidative stability, but also serves as a good chromophore. Polymers have strong blue fluorescence due to the efficient energy migration from the extended π-electronic structure of the polymers to the chiral binaphthyl core and can be expected to have potential application in the materials of fluorescent sensors. Circular dichroism (CD) spectra of polymers P-1 and P-2 are almost identical except that they gave opposite signals at each wavelength. The long wavelengths CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure in the repeating unit and a high rigidity of the polymer backbone.  相似文献   

6.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(22):6491-6500
Pyrene-functionalized chiral methylpropargyl esters, (R)-3-butyn-2-yl-1-pyrenebutyrate [(R)-1], (S)-3-butyn-2-yl-1-pyrenebutyrate [(S)-1], (R)-3-butyn-2-yl-1-pyrenecarboxylate [(R)-2], and 3-butyn-2-yl-1-pyrenecarboxylate [(R,S)-2] were polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] to obtain the corresponding polymers with moderate molecular weights (Mn: 10?500-66?500) in good yields (82-97%). All the polymers were soluble in CHCl3, CH2Cl2, and THF. The polarimetric and CD spectroscopic data indicated that poly[(R)-1], poly[(S)-1], and poly[(R)-2] existed in a helical structure with predominantly one-handed screw sense in these solvents. The helical structure of poly[(R)-1] and poly[(S)-1] was stable upon heating and addition of MeOH, while that of poly[(R)-2] changed upon MeOH addition. The copolymerization of (R)-1 with (S)-1 was also conducted to obtain the copolymers satisfactorily. Poly[(R)-1], poly[(S)-1], and poly[(R)-2] emitted fluorescence smaller than the corresponding racemic copolymers. The fluorescence intensity was tuned by the addition of MeOH to THF solutions of the polymers.  相似文献   

7.
The electrochemical study of N-tert-butoxy-2,4-diphenyl-6-tert-butylphenylaminyl (1a), N-tert-butoxy-2,4-bis(4-chlorophenyl)-6-tert-butylphenylaminyl (1b), N-[2-(methoxycarbonyl)-2-propyl]-2,4-diphenyl-6-tert-butylphenylaminyl (2), and N-tert-butoxy-2,4,6-tris(4-chlorophenyl)phenylaminyl radicals (3) was performed by cyclic voltammetry using acetonitrile as the solvent and Bu4NPF6 as the supporting electrolyte. On cathodic scan (100 mV/s), all the radicals gave chemically reversible cyclic voltammograms, and the were determined to be −1.405 V (1a), −1.310 V (2a), −1.282 V (2b), and −1.195 V (3) (versus Fc+/Fc), respectively. On anodic scan (100 mV/s), on the other hand, 1a, 1b and 2 showed chemically reversible cyclic voltammograms, but 3 exhibited a partially reversible couple even on a scan rate of 500 mV/s, indicating that the cation species of 3 was less stable. The determined for 1a, 1b, 2 and 3 were 0.220, 0.280, 0.318 and 0.294 V (versus Fc+/Fc), respectively. The electrochemical data were compared with those of thioaminyl radicals, the corresponding sulfur analogues of 1-3.  相似文献   

8.
Treatment of a dihydrosilane (methylphenylsilane, 1) with mixtures of a diyne (p- or m-diethynylbenzene, 2a or 2b) and a triyne (1,3,5-triethynylbenzene, 3a or B,B′,B″-triethynyl-N,N′,N″-trimethylborazine, 3b; 1:2:3=100:95:5, 100:90:10, 100:80:20) in the presence of Pd-PCy3 (Cy=cyclohexyl) catalyst gave new crosslinked silylenedivinylene polycarbosilanes. In TGA the resulting crosslinked polymers tended to show higher Td5 values and higher char yields than the corresponding linear polymers. On the other hand, UV/vis absorption spectra of the crosslinked polymers obtained in the reactions of 2a or 2b with 3a exhibited increased broad peaks around 390 nm for 2a or 360 nm for 2b. Coincidently, their fluorescence spectra showed significant increase of the emission peaks in 400-550 nm. The crosslinked polymer derived from 2a and 3b, however, showed decrease of the absorption peak around 390 nm and profound depression of fluorescence peaks in 400-550 nm.  相似文献   

9.
Polymers P-1, P-2, P-3, P-4 and P-5 were synthesized by the polymerization of 5,8-bis(ethynyl)isoquinoline (M-1) with (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-2), (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-2), (R)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-3), (S)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-3), and rac-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl (M-4) under Sonogashira reaction, respectively. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and circular dichroism (CD) spectroscopy. CD spectra of polymers P-1 and P-2, P-3 and P-4 are almost identical except that they gave opposite signals at each wavelength. The long wavelength CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure in the repeating unit and the helical backbone in the polymer chain. All five polymers have strong blue-green fluorescence due to the efficient energy migration from the extended π-electronic structure of the repeating unit of the polymers to the chiral binaphthyl core and are expected to provide understanding of structure-property relationships of the chiral conjugated polymers.  相似文献   

10.
Jinqing Qu  Toshio Masuda 《Polymer》2006,47(19):6551-6559
Novel acetylene monomers containing N-phenyl-substituted carbazole (Cz) and triphenylamine (TPA) groups, namely, 3-ethynyl-9-phenylcarbazole (1) and p-(N,N-diphenylamino)phenylacetylene (2) were synthesized, and polymerized with several Rh-, W-, and Mo-based catalysts. Poly(1) and poly(2) with high number-average molecular weights (15?500-974?000) were obtained in good yields (77-97%), when [(nbd)RhCl]2-Et3N (nbd = norbornadiene) was used as a catalyst. The polymers exhibited UV-vis absorption peaks derived from the Cz and TPA moieties at 250-350 nm and polyacetylene backbone above 350 nm. The UV-vis absorption band edge wavelengths of the polymers were longer than those of the corresponding monomers. Poly(2) exhibited a UV-vis absorption peak at a longer wavelength than poly(1) did, which indicates that poly(2) has main chain conjugation longer than that of poly(1). The molecular weights and photoluminescence quantum yields of the polymers obtained by the polymerization using [(nbd)RhCl]2-Et3N were larger than those of the Rh+(nbd)[η6-C6H5B(C6H5)3]-based counterparts. The cyclic voltammograms of the polymers indicated that they had clear electrochemical properties; the onset oxidation voltage of poly(1) was higher than those of N-alkyl-substituted Cz derivatives. The polymers showed electrochromism and changed the color from pale yellow to blue by application of voltage, presumably caused by the formation of charged polaron at the Cz and TPA moieties. The temperatures for 5% weight loss of the polymers were around 350-420 °C under air, indicating the high thermal stability.  相似文献   

11.
Toru Katsumata 《Polymer》2009,50(6):1389-6640
The ring-opening metathesis polymerization (ROMP) of norbornene derivatives 1-5 bearing oligomeric siloxane pendant groups was carried out with Grubbs 1st and 2nd generation, and Grubbs-Hoveyda ruthenium (Ru) catalysts. Monomer 1 gave high-molecular-weight polymers (Mn ca. 27?000-180?000) in high yields (80-100%). Monomers 2-5 also polymerized with Ru carbene catalysts to give high-molecular-weight polymers (Mn ca. 34?000-240?000) in high yields (66-100%). The onset temperatures of weight loss (T0) of the polymers were 180-250 °C. The glass transition temperatures (Tgs) of poly(1) and poly(2) bearing branched siloxane linkages were near or higher than room temperature (27 and 101 °C). Meanwhile, the Tgs of poly(3)-poly(5) bearing linear siloxane linkages were much lower (−115 to −23 °C), and decreased with increasing length of the siloxane linkages. Poly(1) and poly(2) were hydrogenated completely, which was confirmed by 1H NMR spectroscopy. The free-standing membranes of poly(1) and poly(2) showed high gas permeability; especially poly(2) is the most permeable to various gases among ROMP-polynorbornene derivatives reported so far.  相似文献   

12.
13.
Optically active, polycarbodiimides 3(a, b & c) with pyridine pendant groups were synthesized using [(R) - 2,2′- binaphthoxy] (di-isopropoxy) titanium(IV) catalyst. The polymers were characterized by 1H and 13C NMR, and IR. Thermal stability of these polymers (up to 162 °C by TGA), allows thermally demanding chemical transformations on their side chains without decomposition. Advantages include fine-tunability of the other pendant group of the carbodiimide monomer. This allows one to optimize the properties of the polymer without undergoing copolymerization or further post-polymerization modifications. Borane (BH3) was coordinated to poly 3 (a & b) to prepare the functional polymers 4 (a & b) respectively. A strong IR signature peak at 2368 cm−1 supports BH3 coordination. Gravimetric analysis indicates 97-99% borane complexation of the pyridine units. In addition, the thermal stability increased to 194 °C in poly 4a is consistent with the incorporation of BH3 to the pendant pyridine of the helical polycarbodiimide 3a. Poly 4 (a & b) can be used as supported reagents and successfully reduced the carbonyl compounds (5 a-e) in moderate to excellent yields (60-100%) and are shown to be efficient, non-volatile, stable, and mild supported-reducing reagents. Upon completion of the reduction reaction, the polymer support was quantitatively recycled as required for a green solid catalyst support.  相似文献   

14.
The polymerization of a novel monomer p-(t-butyldimethylsiloxy)tolan (1) with TaCl5-n-Bu4Sn provided a high molecular weight polymer (poly(1)), whose Mw reached 4.0×106. The poly(1) membrane was prepared by the casting method, and converted into poly[(p-hydroxy)tolan] (poly(2)) with a mixture of trifluoroacetic acid/water. Whereas poly(1) dissolved in low polarity solvents such as toluene and chloroform, poly(2) was practically insoluble in any solvents, although it partly dissolved in methanol and ethanol. The onset weight loss temperatures of poly(1) and poly(2) in air were 320 and 360 °C, respectively, indicating fair thermal stability among substituted polyacetylenes. The oxygen permeability coefficients (PO2) of poly(1) was 150 barrers, which is relatively small among polytolan derivatives, while that of poly(2) was 8.0 barrers and smaller owing to the presence of polar hydroxyl groups.  相似文献   

15.
Wei Zhang 《Polymer》2006,47(9):2956-2961
Polymerization of o-diethynylbenzene (1) by Rh and Ta catalysts resulted in the formation of structurally different polymers depending on the kind of catalyst. When a Rh catalyst was used, insoluble cross-linked poly(1) was formed, mainly consisting of alternating double bonds and the unreacted ethynyl group along with indene-type structure formed by intramolecular cyclization as a minor component. A Ta catalyst completely consumed both ethynyl groups in the polymerization of 1 to afford mainly highly cross-linked poly(1) containing trisubstituted benzene unit via intermolecular cyclization. 1-Ethynyl-2-phenylethynylbenzene (2) was polymerized by W and Mo catalysts to give soluble polymers with Mn of 6300-71,900 in good yields. Poly(2) obtained by Mo catalysts had alternating double bonds in the main chain and o-(phenylethynyl)phenyl group as side chains. Poly(2) formed by W catalysts predominantly contained a similar main-chain structure and also possessed the naphthalene-type cyclic unit formed by cyclization of the adjacent diethynyl groups as a minor part.  相似文献   

16.
The polymerization of 1-β-naphthyl-2-[(p-trimethylsilyl)phenyl]acetylene (8a) with TaCl5-n-Bu4Sn in cyclohexane provided a high molecular weight polymer (9a) (Mw=3.4×106). The corresponding monomers having p-dimethyl-t-butylsilyl and p-dimethyl(10-pinanyl)silyl groups in place of p-trimethylsilyl group in 8a also polymerized in a similar way to give high molecular weight polymers (9b, 9c, respectively; Mw>1×106). All these polymers were soluble in many common solvents such as toluene and chloroform, and provided free-standing membranes by casting from toluene solution. The oxygen permeability coefficients (PO2) of 9a at 25 °C was as high as 3500 barrers. The membrane of poly(1-β-naphthyl-2-phenylacetylene) (10a) was prepared by desilylation of the membrane of 9a with trifluoroacetic acid. Polymer 10a was insoluble in any solvents, and showed high thermal stability (the onset temperature of weight loss in air ∼470 °C). The PO2 value of 10a reached 4300 barrers. Not only the membrane of 9c but also its desilylation product 10c exhibited large optical rotations ([α]D=+2924 and +9800°, respectively) and strong CD signals. This indicates that the membrane of 10c maintains the helical main chain conformation of 9c with a large excess one-handed helix sense.  相似文献   

17.
João Carlos Ramos 《Polymer》2006,47(24):8095-8100
(R)-(−) (1) and (S)-(+)-2-(3′-Thienyl)ethyl N-(3″,5″-dinitrobenzoyl)-α-phenylglycinate (2) monomers were synthesized, characterized, and polymerized in chloroform using FeCl3 as an oxidizing agent. Molecular weights of 2.6 × 104 and 3.2 × 104 for poly1 and poly2, respectively, were determined by SEC analysis. FTIR spectra of the polymers indicated the coupling of monomers through the α positions. UV-vis spectra showed absorption bands at λmax = 226 and 423 nm for poly1 and poly2, ascribed to transitions of side groups and polythiophene backbone, respectively. Poly1 and poly2 remained stable up to 210 °C. At higher temperatures, a two step weight loss degradation process was observed for both polymers by TGA analysis. 1H NMR, in the presence of Eu(tfc)3, and optical rotation measurements indicate the chiral properties of the monomers 1 ([α]D28 = −76.2) and 2 ([α]D28 = +76.0), and the maintenance of chirality after polymerization (poly1 [α]D28 = −29.0 and poly2 [α]D28 = +28.4, c = 2.5 in THF). According to scanning electron microscopic analysis, the polymers are highly porous.  相似文献   

18.
Poly[N5-(R and S)-1-(1-pyrenyl)ethyl-l-glutamines] (1 and 2) were prepared by condensation of poly(l-glutamic acid) with optically resolved amines. In solution, these polymers, 2 in particular, gave large circular dichroism (CD) indicative of exciton coupling among the side-chain pyrene chromophores. When compared with the corresponding polymer with achiral side groups, i.e. poly(1-pyrenylmethyl-l-glutamine) (3), 1 and 2 not only gave much stronger CD, but also gave much reduced excimer emission with a significant hypsochromic shift of emission maximum. The highly controlled orientation of the side-chain chromophores is apparently brought about by the specific steric interactions among the bulky chiral side chains along the helical main chain.  相似文献   

19.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(16):4628-4636
Novel chiral acetylene monomers bearing carbazole and triphenylamine groups, namely, (S)-3-butyn-2-yl 2-(9-carbazolyl)ethyl carbonate (1) and (S)-3-butyn-2-yl 4-(diphenylamino)benzoate (2) were synthesized, and polymerized with Rh+(nbd)[η6-C6H5B(C6H5)3] catalyst to give the corresponding polymers with moderate molecular weights (Mn 13.0 × 103 and 15.5 × 103) in good yields (86% and 88%). CD spectroscopic studies revealed that poly(1) and poly(2) took predominantly one-handed helical structure in CHCl3. The helical structures of poly(1) and poly(2) were very stable against heating and addition of MeOH. The solution of poly(1) and poly(2) emitted fluorescence in 0.52% and 7.2% quantum yields, which were lower than those of the corresponding monomers 1 and 2 (22.5% and 76.5%). The cyclic voltammograms of the polymers indicated that the oxidation potentials of the polymers were lower than those of the monomers. The polymers showed electrochromism and changed the color from pale yellow to pale blue by application of voltage, presumably caused by the formation of polaron at the carbazole and triphenylamine moieties. The onset temperatures of weight loss of poly(1) and poly(2) were 225 and 270 °C under air.  相似文献   

20.
Xiaobo Huang  Ying Xu  Lili Zong  Yixiang Cheng 《Polymer》2009,50(13):2793-5816
The chiral polymer P-1 was synthesized by the polymerization of (R)-6,6′-dibutyl-3,3′-diiodo-2,2′-bisoctoxy-1,1′-binaphthyl (R-M-1) with 5,5′-divinyl-2,2′-bipyridine (M-1)via Pd-catalyzed Heck reaction. P-2 and P-2′ were prepared by Wittig-Horner reaction of (R)-6,6′-dibutyl-2,2′-bisoctoxy-1,1′-binaphthyl-3,3′-dicarbaldehyde (R-M-2) with 5,5′-bis (diethylphosphonomethyl)-2,2′-bipyridine (M-2) in the presence of EtONa or NaH, respectively. P-3 was synthesized by Wittig-Horner reaction of (R)-6,6′-di(4-trifluoromethylphenyl)-2,2′-bisoctoxy-1,1′-binaphthyl-3,3′-dicarbaldehyde (R-M-3) with M-2 using NaH as a base. The four polymers have strong blue-green fluorescence due to the extended π-electronic structure between the chiral model compounds (R)-6,6′-dibutyl-/di(4-trifluoromethylphenyl)-2,2′-bisoctoxy-1,1′-binaphthyl (R-1 or R-2) and the conjugated linker 2,2′-bipyridyl group via vinylene bridge. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and circular dichroism (CD) spectroscopy. Based on the great differences of specific rotation values and CD spectra, P-1 and P-2 may adopt a zigzag chain configuration, while P-2′ and P-3 may adopt a helical configuration. The responsive optical properties of the two chiral helical polymers P-2′ and P-3 on transition metal ions were investigated by fluorescence, UV-vis and CD spectra. The results show that Ag+ and Ni2+ lead to nearly complete fluorescence quenching of P-2′ and P-3, Cu2+ and Fe2+ can cause obvious fluorescence quenching, but Zn2+ and Cd2+ can only produce slight fluorescence quenching. Ag+, Ni2+, Cu2+ and Fe2+ can also lead to the obvious changes of UV-vis spectra of P-2′ and P-3. On the contrary, Zn2+ and Cd2+ cause little changes. Most importantly, the CD intensities and wavelengths of the chiral helical polymers P-2′ and P-3 exhibit the pronounced changes upon addition of Ag+ and Ni2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号