首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three small band gap copolymers based on alternating dithiophene and thienopyrazine units were synthesized via Yamamoto coupling and applied in bulk heterojunction solar cells as donor together with PCBM ([6,6]-phenyl C61 butyric acid methyl ester) as acceptor. The polymers have an optical band gap of about 1.3 eV in the solid state and only vary by the chemical nature of the solubilizing side chains. The nature of the side chain has a major effect on solubility and processability of the polymer. Using n-butoxymethyl side chains a soluble, easy to process polymer was obtained that gave the best photovoltaic performance. With short-circuit currents up to 5.2 mA/cm2 an efficiency of 0.8% was achieved under estimated standard solar light conditions (AM1.5G, 100 mW/cm2) with spectral response up to 950 nm.  相似文献   

2.
Qiang Zhang  Suobo Zhang  Weihui Bi 《Polymer》2011,52(24):5471-5478
A series of comb-type amphiphilic copolymers (PES-g-PEO) with a stiff poly(aryl ether sulfone) backbone and flexible PEO side chains was synthesized via a “grafting onto” technique. By controlling the monomer feed ratios, high molecular weight copolymers with a range of PEO side chain content were prepared and used to form tough and flexible membranes. The PES-g-PEO membranes displayed high thermal stability (Td > 230 °C) and good mechanical properties. The water contact angles of the PES-g-PEO membranes ranged from 60.5° to 66.7°, 20° lower than those of poly(aryl ether sulfone) membranes (82-86°), indicating that the PEO side chains improved the hydrophilicity of the membranes. Wide-angle X-ray diffraction results indicated that the PES-g-PEO membranes possessed an amorphous structure, that is, crystallization of the PEO side chains did not occur. The Li-ion conductivity reached 2.26 × 10−4 S/cm at room temperature, much higher than that of the pure PEO-based system (10−6 S/cm), due to the presence of the amorphous PEO side chains between the PES backbones, which provided an effective Li-ion transport pathway.  相似文献   

3.
In this study, polyimide/graphene nanocomposite films which exhibited significant enhancements in mechanical properties and electrical conductivity were successfully fabricated. Graphene oxide (GO) synthesized by Hummer’s method was chemically modified with ethyl isocyanate to give ethyl isocyanate-treated graphene oxide (iGO), which is readily dispersed in N,N′-dimethylformamide (DMF). The iGO dispersion in DMF was then used as media for synthesis of polyimide/functionalized graphene composites (PI/FGS) by an in situ polymerization approach. It was shown that addition of only 0.38 wt% of FGS, Young’s modulus of the PI/FGS composite film was dramatically increased from 1.8 GPa to 2.3 GPa, which is approximately 30% of improvement compared to that of pure PI film, and the corresponding tensile strength was increased from 122 MPa to 131 MPa. In addition, the electrical conductivity of the PI/FGS with this graphene content was increased by more than eight orders of magnitude to 1.7 × 10−5 S m−1.  相似文献   

4.
Eun-Mi Kim  O-Pil Kwon 《Polymer》2011,52(20):4451-4455
We investigated new highly conductive polyaniline copolymers bearing a small amount of dual-functional hydrophilic dioxyethylene side chains, which can act as a stabilizer in a heterogeneous dispersion medium in polymerization and a reactive dispersant in polar solvents. Compared to the unsubstituted polyaniline, new polyaniline copolymers maintained their high electrical conductivity of 485 S/cm with camphorsulfonic acid dopant in m-cresol. Moreover, in the alcoholic butoxyethanol solvent with a dodecylbenzenesulfonic acid dopant, new polyaniline copolymers showed enhanced dispersion abilities with very small particle sizes of <10 nm and exhibited a high electrical conductivity of 13 S/cm, which is significantly higher than polyanilines in an organic aliphatic alcoholic solvent (10−6∼1 S/cm). Therefore, new polyaniline copolymers are very interesting materials for electronic applications.  相似文献   

5.
Lin Ye  Feng Wu  Ying Bai  Zeng-guo Feng 《Polymer》2007,48(6):1550-1556
A kind of novel hyperbranched copolyethers intending for the solid polymer electrolyte was synthesized via the cationic ring-opening polymerization of 3-{2-[2-(2-methoxyethoxy)ethoxy]-ethoxy}methyl-3′-methyloxetane (MEMO) and 3-hydroxymethyl-3′-methyloxetane (HMO) in the presence of BF3·Et2O as an initiator. Herein HMO was employed to create the hyperbranched structure, whereas MEMO was responsible for the ionic transportation of the resulting copolymers. The terminal structure featured by a cyclic fragment was definitely detected by MALDI-TOF measurement. The degree of branching of the copolymers was calculated by means of 13C NMR spectra. The DSC analysis implied that they hold the excellent segment motion performance and perfectly amorphous state beneficial for the ionic transportation. The ionic conductivity measurements showed that the sample HMO 30 reaches a maximum ionic conductivity of 8.0 × 10−5 S/cm at 30 °C and 7.4 × 10−4 S/cm at 80 °C, respectively, after doping with lithium salt LiTFSI. Moreover, the TGA assay exhibited that these hyperbranched copolymers possess the higher thermostability as compared with their liquid counterparts.  相似文献   

6.
Kangcheng Chen 《Polymer》2011,52(10):2255-2262
Sulfonated multiblock copolynaphthalimides (multiblock co-SPIs) were prepared by two-pot polymerization method from 1,4,5,8-naphthalenetetracarboxylic dianhydride, sulfonated diamine of 4,4′-bis(4-aminophenoxy)-3,3′-bis(4-sulfophenyl)biphenyl (BAPSPB) and nonsulfonated diamine of 4,4′-diaminophenyl hexafluoropropane. The multiblock co-SPI (BA1) with hydrophilic/hydrophobic block length of 20/10 and ion exchange capacity (IEC) of 1.67 meq g−1 exhibited larger water uptake, larger in-plane and through-plane proton conductivity (σ and σ⊥, respectively) than the random co-SPI with the similar IEC. The multiblock co-SPI (BA2) with the longer block length of 20/20 exhibited the large σ and σ⊥ comparable to those of BA1, in spite of the smaller IEC of 1.35 meq g−1. Both the multiblock and random co-SPIs showed the moderate anisotropic proton conductivity (σ/σ//≒ 0.70) as well as anisotropic membrane swelling with about three times larger through-plane swelling than in-plane swelling. The TEM observation revealed that BA2 had an isotropic and inhomogeneous morphology with indistinct microphase-separated structure, whereas the random co-SPIs had a homogeneous morphology. The behavior of BAPSPB-based multiblock co-SPI membranes were quite different from that of the multiblock co-SPIs based on 2,2′-bis(4-sulfophenoxy)benzidine, which was due to the presence of two flexible ether bonds in BAPSPB moiety of the main chain. Even under the low humidification of 27/27% RH at 90 °C and 0.2 MPa, BA2 exhibited the fairly high PEFC performance; namely, cell voltage of 0.67 V at load current density of 0.5 A cm−2 and maximum output of 0.51 W cm−2, which were much larger than those of BA1 and the random co-SPI (RA1) with IEC of 1.84 meq g−1, and have the high potential as PEM for PEFC applications.  相似文献   

7.
Melts of linear brush polymers with PEO side chains attached at each repeat unit of the backbones have been doped with CF3SO3Li+. Mechanical properties and ionic conductivity of such systems have been analyzed using mechanical and dielectric spectroscopies. Mechanical spectra indicated a presence of super soft states for samples with long backbones or for systems which have been slightly cross-linked (G′<104 Pa). In the case of the polymer with longer crystallizing PEO side chains (MWav=1100 g/mol), the ionic conductivity reaching the 10−3 S/cm level at the optimum CF3SO3Li+ concentration (EO/Li+=10:1) have been detected at temperatures not far above the room temperature. The presence of lithium ions suppresses completely the crystallization of PEO side chains.  相似文献   

8.
C. Ruiz-Orta 《Polymer》2011,52(13):2856-2868
Two different types of regularity bands are identified in a real time FTIR crystallization of a series of random propylene 1-hexene copolymers. The first is akin to the bands observed in the homopolymer, those associated with 31 helices of isotactic sequences of different n length (n, number of monomer units). The second type corresponds to vibrational coupling of short sequences of the chain that include the 1-hexene comonomer. Among the latter are absorbances at 910 and 1025 cm−1 which are markers for the formation of a trigonal phase in these copolymers. They remain unchanged prior to and during crystallization in copolymers with the 1-hexene units rejected from the crystallites (<13 mol% 1-hexene) and increase in intensity when the comonomer is an integral part of the crystallites (>13 mol% 1-hexene). Analysis of the real time evolution of IR regularity bands during isothermal crystallization of these copolymers confirms the beginning of crystallization at a critical helical sequence length (n∗) of ∼12 isotactic units (841 cm−1), and enables details of the early and final stages of crystallization. In the homopolymer and copolymers, the intensity of regularity bands with n ≤ 10 is constant in the initial undercooled melt, and increases simultaneously with the appearance of helices with n ≥12, in support of a classical crystallization mechanism of nucleation and growth. Due to density fluctuations in the initial melt, the short helices eventually collapse in aggregates or precursors that spontaneously (within the experimental macroscopic time frame) extend to stable nuclei (n ≥ 10). Stable nuclei further extend and grow cooperatively dragging additional short sequences as inferred by the simultaneous temporal evolution of helices with n = 10 and greater. The intensity of the 998 cm−1 (n = 10) band prior to nucleation, correlates directly with the isotactic sequence length of the copolymer and is independent of the final structure that evolves, either monoclinic or trigonal. This feature infers a nucleation event driven preferentially by the initial steady-state content of short helices in iPP and iPP-based copolymers. The temporal evolution of the 841 cm−1 band is an excellent avenue to study the crystallization kinetics of copolymers, including those with very low crystallinities. Via FTIR, the mechanism of the formation of mesomorphic crystallites in copolymers with ∼10 mol% 1-hexene at low temperatures is contrasted with the formation of alpha crystallites at higher temperatures in the nucleation driven range. The intensity of the 841 cm−1 band (n = 12) at the end of the transformation correlates linearly with the degree of crystallinity obtained by WAXD.  相似文献   

9.
The non-isothermally and isothermally crystallized stereodiblock copolymers of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) with equimolar l-lactyl and d-lactyl units and different number-average molecular weights (Mn) of 3.9 × 103, 9.3 × 103, and 1.1 × 104 g mol−1, which are abbreviated as PLLA-b-PDLA copolymers, contained only stereocomplex crystallites as crystalline species, causing higher melting temperatures of the PLLA-b-PDLA copolymers compared to those of PLLA homopolymers. In the case of non-isothermal crystallization, the cold crystallization temperatures of the PLLA-b-PDLA copolymers during heating and cooling were respectively lower and higher than those of PLLA homopolymers, indicating accelerated crystallization of PLLA-b-PDLA copolymers. In the case of isothermal crystallization, in the crystallizable temperature range, the crystallinity (Xc) values of the PLLA-b-PDLA copolymers were lower than those of the PLLA homopolymers, and were susceptible to the effect of crystallization temperature in contrast to that of homopolymers. The radial growth rate of the spherulites (G) of the PLLA-b-PDLA copolymers was the highest at the middle Mn of 9.3 × 103 g mol−1. This trend is different from that of the PLLA homopolymers where the G values increased monotonically with a decrease in Mn, but seems to be caused by the upper critical Mn values of PLLA and PDLA chains as in the case of PLLA/PDLA blends (in other papers), above which homo-crystallites are formed in addition to stereocomplex crystallites. The disturbed crystallization of PLLA-b-PDLA copolymers compared to that of the PLLA/PDLA blend is attributable to the segmental connection between the PLLA and PDLA chains, which interrupted the free movement of those chains of the PLLA-b-PDLA copolymers during crystallization. The crystallite growth mechanism of the PLLA-b-PDLA copolymers was different from that of the PLLA/PDLA blend.  相似文献   

10.
Maojie Zhang 《Polymer》2011,52(24):5464-5470
Two D-A copolymers containing dithienosilole (DTS) donor unit and phthalimide (Ph) acceptor unit, PDTSPh and PDTSBTPh, were synthesized by the Pd-catalyzed Stille-coupling method. The copolymers have a strong absorption ranging from 350 to 650 nm, exhibit good solubility and thermal stability. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels of the copolymers determined by cyclic voltammetry were about −5.2 and −3.0 eV, respectively. The power conversion efficiency of the polymer solar cells based on PDTSBTPh:PC70BM (1:2, w/w) reached 2.1% with open-circuit voltage of 0.83 V and a short-circuit current of 6.27 mA/cm2, under the illumination of AM1.5, 100 mW/cm2.  相似文献   

11.
Polymethacrylate copolymers, which have hexamethylene spacer groups terminated with 4-methoxyphenyl-4′-oxycinnamate (MPC) and 4-oxybenzoic acid (BA) in the side chain, were synthesized. Thin films underwent thermally enhanced photoinduced cooperative molecular reorientation using linearly polarized ultraviolet (LPUV) light and subsequent annealing. Moreover, low exposure energy (4-80 mJ cm−2) and annealing temperature (<140 °C) provided sufficient cooperative molecular reorientation of both side groups with a large reorientational order (S > 0.5). Tuning the copolymer composition adjusted the birefringence (?n) of homogeneously reoriented films between 0.10 and 0.22 at 517 nm. Finally, a phase retarder (?nd = 130 nm) using an oriented copolymer on a triacetylcellulose (TAC) film substrate, which exhibited a thermal stability up to 140 °C, was fabricated.  相似文献   

12.
Surface morphologies and thin film transistor characteristics of three thiophene (TH)-thieno[3,4-b]pyrazine (TP) donor–acceptor conjugated copolymers (PTHTP-C7, PTHTP-C12, and PBTHTP-C7) are reported. The long alkyl side chain probably promoted PTHTP-C12 to become a fibrillar-like structure on the hexamethyldisilazane (HMDS)-modified surface and resulted in better charge transport properties than the other two copolymers. However, a nodule-like morphology on the octyltrichlorosilane (OTS)-modified surface was observed due to the strong interaction between the non-polar alkyl chains of PTHTP-C12 and highly hydrophobic surface. By further annealing at a higher temperature, a densely packed grain morphology on octyltrichlorosilane (OTS) modified SiO2 surface was shown and led to the field effect mobility of 1.1 × 10−2 cm2 V−1 s−1 with the on/off ratio of 227. The present study suggests that thiophene based donor–acceptor conjugated polymers could have a high FET mobility through the manipulation of polymer morphology.  相似文献   

13.
Nan Xia  Tao Li  Hui Zhu  Guohua Deng 《Polymer》2011,52(20):4581-4589
Crystallization kinetics and behavior of PCL side chains in polymer co-brushes constituted with PCL and PEO side chains alternatively attached on poly(styrene-alt-maleimide) backbones have been determined using in-situ FT-IR and DSC methods. Avrami analysis shows the exponent n increasing from one at 10 °C to two at 30 °C, demonstrating confined crystallization of PCL side chains through homogeneous or heterogeneous nucleation. PLM morphological characterization displays typical spherulites of which size is dependent on the crystallization temperature and further AFM visualization shows typical PCL lamellae at 30 °C and broken lamellae at 10 °C embedded within PEO + backbone matrix inside of spherulites. Such lamellar structure explains the confined crystallization with Avrami exponent n ≤ 2. Formation of the broken lamellae can further clarify the reason why Avrami exponent decreases to n ≈ 1 at 10 °C, that is, homogeneous nucleation in the isolated crystals. Dynamically confined crystallization has been proposed based on their special molecular architecture. Comparing to statically confined crystallization, the construction of confined space and the crystallization process were almost synchronous. The formation of spherulites mesoscopically reveals the entire molecule motion and assembly through a pathway of conventional crystalline polymers and the crystallization of PCL side chains in a space constituted by stiff backbones of poly(styrene-alt-maleimide) plus soft PEO layer microscopically reflects a confined character which has been observed in some conventional block copolymers.  相似文献   

14.
The structure of amphiphilic low-dimensional copolymer electrolytes I of similar overall composition but prepared by different synthetic procedures X and Y are described. I are copolymers of poly[2,5,8,11,14-pentaoxapentadecamethylene(5-alkyloxy-1,3-phenylene)] (CmO5) and poly[2,-oxatrimethylene(5-alkyloxy-1,3-phenylene)] (CmO1) where the alkyl side chains having m carbons are hexadecyl or mixed dodecyl/octadecyl (50/50). 1H NMR shows that the copolymers have 50% (m = 16) or only 18 and 13% of CmO5 units and DSC indicates that the copolymers have ‘block’ sequencing of CmO1 and CmO5 segments. Molecular dynamics modelling indicates that in CmO5 Li+ and BF4 ions are separated by Li+ encapsulation in tetraethoxy segments but in ionophobic CmO1 units the salt is mostly present as neutral aggregates decoupled from the polymer. Conductivities of these microphase-separated mixtures with salt-bridge amphiphilic polyethers II and III of each system are similar. They have low temperature dependence over the range 20 °C to 110 °C at ∼10−3 S cm−1. 7Li NMR linewidth measurements confirm high lithium mobilities at −20 °C. A conduction mechanism is proposed whereby Li+ hopping takes place along rows of decoupled aggregates (dimers/quadrupoles) within an essentially block copolymer structure. Subambient measurements to −10 °C gave a conductivity of 4 × 10−5 S cm−1.  相似文献   

15.
A new series of super high brightness and luminance efficient poly(2,3-diphenyl-1,4-phenylene vinylene) (DP-PPV)-based electroluminescent (EL) polymers containing methoxy or long branched alkoxy chains were synthesized via Gilch polymerization. The branched alkoxy groups were introduced to enhance solubility for blade and spin-coating processes. Monomers of DMeO-PPV and m-Ph-PPV were used to increase steric hindrance and prevent close packing of the main chain. By controlling the feeding ratio of different monomers during polymerization, DP-PPV derivatives with high molecular weight were obtained. All synthesized polymers possess high glass transition temperatures and thermal stabilities. The maximum photoluminescent emissions of the thin films are located between 544 and 547 nm. Cyclic voltammetry analysis reveals that the band gaps of these light-emitting materials are in the range of 2.75-2.84 eV. Blade coating was used to fabricate multilayer polymer light-emitting diodes. A multilayer electroluminescent device with the configuration of ITO/PEDOT:PSS/TFB/P1/TPBi/LiF/Al exhibited a very high luminescence efficiency (10.96 cd A−1). The maximum brightness of the multilayer EL device ITO/PEDOT:PSS/TFB/P3/CsF/Al reached up to 78,050 cd m−2 with a low turn-on voltage (4.0 V). For further investigation, polymer P3 was blended with DPPFBNA to achieve white light-emitting device; the multilayer devices generated a maximum brightness of 1085 cd m−2 and a luminance efficiency of 0.75 cd A−1, with CIE coordinates (0.28, 0.33) at 11 V.  相似文献   

16.
A polymer-based fluorescent sensor was synthesized by polymerization of (S)-6,6′-dibutyl-3,3′-(di-5-salicylde-ethynyl)-2,2′-binaphthol (M-1) with (R,R)-1,2-diaminocyclohexane (M-2) via nucleophilic addition-elimination reaction. The responsive optical properties of the polymer on transition metal ions were investigated by fluorescence and UV-vis spectra. The polymer (1.0 × 10−5 mol/L in THF) could emit fluorescence at 550 nm and exhibit high selectivity for sensing Zn2+ with 36.1-fold fluorescence enhancement. Three logic gates were designed according to the different fluorescence responses of this polymer sensor to Zn2+ and Cu2+.  相似文献   

17.
Low band-gap polythiophene (PT) derivatives, with bulky conjugated side-chains composed of the triphenylamine, thiophene, and vinylene groups (TPATh), are synthesized. The copolymers, synthesized by Grignard metathesis and Stille coupling with different copolymer configurations and side-chain densities, are regioregular-TPATh-PT (rr-TPATh-PT) and random-TPATh-PT (r-TPATh-PT), respectively. The incorporation of bulky conjugated moiety curtails the effective conjugation length in the main chain; thus, low HOMO levels are obtained for the copolymers. Moreover, r-TPATh-PT with less bulky side-chain content exhibits a better conjugation along the polymer backbone than rr-TPATh-PT. Higher absorption intensity in the vision region is observed for r-TPATh-PT in comparison with rr-TPATh-PT. In addition, polymer solar cells (PSCs) are fabricated based on an interpenetrating network of PT derivatives as the electron donor and the fullerene derivatives (PC61BM and PC71BM) as the electron acceptors. Better compatibility is observed for the r-TPATh-PT/PC61BM-blend film as compared to the rr-TPATh-PT/PC61BM-blend film. Higher photovoltaic (PV) performances of the r-TPATh-PT/PC61BM-based PSCs are observed in comparison with the rr-TPATh-PT/PC61BM-based PSCs. The power conversion efficiency (PCE) of the PSC based on the blend of r-TPATh-PT and PC61BM (w/w = 1:1) reaches 0.94% under an illumination of AM 1.5G, 100 mW cm−2, which is almost twice that of the cell based on rr-TPATh-PT. Further improvement of PV performance is achieved for the PSC fabricated from the blend of r-TPATh-PT and fullerene derivative PC71BM (w/w = 1:3), with a short-circuit current of 6.83 mA cm−2, an open-circuit voltage of 0.71 V and a PCE of 1.75%.  相似文献   

18.
Series of graft copolymers with [Poly(epichlorohydrin-co-ethylene oxide)] [Poly(ECH-co-EO)] as backbone and polystyrene (PS), poly(isoprene) (PI) or their block copolymers as side chains were successfully synthesized by combination of ring-opening polymerization (ROP) with living anionic polymerization. The Poly(ECH-co-EO) with high molecular weight (Mn = 3.3 × 104 g/mol) and low polydispersity index (PDI = 1.34) was firstly synthesized by ring-ROP using ethylene glycol potassium as initiator and triisobutylaluminium (i-Bu3Al) as activator. Subsequently, by “grafting onto” strategy, the graft copolymers Poly(ECH-co-EO)-g-PI, Poly(ECH-co-EO)-g-PS and Poly(ECH-co-EO)-g-(PI-b-PS) were obtained using the coupling reaction between living PILi+, PSLi+ or PS-b-PILi+ species capped with or without 1,1-diphenylethylene (DPE) agent and chloromethyl groups on poly(ECH-co-EO). By model experiment, the addition of DPE agent was confirmed to have an important effect on the grafting efficiency at room temperature. Finally, the target graft copolymers and intermediates were characterized by SEC, 1H NMR, MALLS and FTIR in detail, and thermal behaviours of the graft copolymers were also investigated by DSC measurement.  相似文献   

19.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

20.
A series of phenolphthalein-based cardo poly(arylene ether sulfone) (PES) block copolymers containing pendant imidazolium group (PI-PESs) were synthesized as novel anion exchange membranes for direct methanol alkaline fuel cells. These PI-PESs combine the advantages of pendant anion conductors on the polymer side chains with the thermochemical stabilities of the imidazolium group, showing high hydroxide conductivity, together with good physical and chemical stability under basic conditions. The hydroxide conductivity over 0.03 S/cm at 20 °C and 0.1 S/cm at 80 °C was obtained for the PI-PES membranes. In addition, PI-PES membranes show low permeability to methanol (below 6.74 × 10−8 cm2/s) and very high selectivity (over 3.7 × 105 S·s/cm3). These properties make the PI-PESs promising candidate materials for anion exchange membranes for direct methanol alkaline fuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号