首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将丝素蛋白(SF)和乳酸-羟基乙酸共聚物(PLGA)溶解在六氟异丙醇中配制成溶液,采用静电纺丝技术制备了SF/PLGA纳米纤维支架,使用扫描电子显微镜(SEM)对纤维支架进行表征,研究了聚合物溶液浓度、纺丝电压、接收距离以及体积流率对纳米纤维形态的影响,从而得到纺丝的最适宜工艺参数。考察了纤维支架表面对HUVECs细胞的相容性。结果表明:HUVECs可以在SF/PLGA纤维支架表面很好的黏附和增殖,支架具有良好的细胞相容性,在组织工程领域有良好的应用前景。  相似文献   

2.
Drug delivery through tissue-engineered scaffolds provides a composite approach to address the regenerative limitations of simple material implantation, providing expanded avenues for therapeutic tissue-repair strategies in the clinic. Both nano- and microfibrous scaffolds generated by a variety of techniques have been investigated for their potential in drug-delivery applications. While nanofibers mimic the structure and organization of natural extracellular matrix, microfibers provide more sustained release of drugs, larger pores to facilitate cell infiltration, and improved mechanical support. Various methods exist to embed drugs within the fiber matrix to modulate the release kinetics specific to the tissue-engineering application. The current article reviews the established and emerging fabrication methods for drug-loaded fiber-based scaffolds and addresses how further combination into composite scaffolds can enhance drug delivery and tissue regeneration.  相似文献   

3.
To improve the interaction between cells and scaffolds, the appropriate surface chemical property is very important for tissue engineering scaffolds. In this work, the dopamine (DA) was first introduced into thermoplastic polyurethane (TPU) matrix to obtain TPU/DA nanofibers by electrospinning. Subsequently, the TPU@polydopamine (PDA) composite nanofibers with core/shell structure were fabricated by in situ polymerization of PDA. In comparison with TPU nanofibers, the uniformization of PDA coating layer on the surface of TPU/DA composite nanofibers significantly increased due to the addition of DA, which used as the active sites to guide the PDA particles accumulated along with the fiber direction. The hydrophilicity and water uptake ability of TPU@PDA composite nanofibers were larger than those of TPU nanofibers. The TPU@PDA composite nanofibers possess excellent comprehensive mechanical properties of high strength, stiffness, elasticity, and recoverability because of the hydrogen bonding occurrence between PDA and DA, as well as between PDA and TPU matrix. The attachment and viability of mouse embryonic osteoblasts cells (MC3T3-E1) cultured on TPU@PDA composite nanofibers were obviously enhanced compared with TPU nanofibers. Those results suggested that the modified TPU@PDA composite nanofibers have superior mechanical and biological properties, which promoting them potentially useful for tissue engineering scaffolds.  相似文献   

4.
The Bombyx mori silk fibroin/Tussah silk fibroin (SF/TSF) nanofibers with diameters between 300 and 3500 nm were prepared by electrospinning with the solvent HFIP. The average diameters of SF/TSF blend fibers increased from 404 to 1977 nm, with the increase of SF content in blend solutions, and the relationship between the average diameters of SF/TSF and SF content was proved to be linear correlation. Results from FTIR, TG-DTA and X-ray diffraction showed that the electrospun fibers were mainly β-sheet structure and, heterogeneous micro-structures. In particular, the presence of two different endothermic peaks at 300 and 360 °C in the TG-DTA curves may be ascribed to the thermal decomposition of SF and TSF. These results suggested that SF and TSF were still immiscible even dissolved in hexafluoroisopropanol (HFIP) after electrospinning and ethanol treatment. Moreover, the thermal decomposition temperature and enthalpy were improved with the blend of SF and TSF, else the SF/TSF nanofibers' moisture absorption was higher than the pure SF or TSF nanofibers. To study the cytocompatibility and cell behavior on the SF/TSF nanofibers, MSCs, VECs, and Neurons were seeded onto the nanofibers. Results indicated that the SF/TSF nanofibers promote cell attachment and spreading, suggesting that these nanofibers could be a candidate scaffold for blood vessel and nerve injury recovery.  相似文献   

5.
A series of nanofibrous scaffolds were prepared by electrospinning of poly(vinyl alcohol) (PVA)/gelatin aqueous solution. PVA and gelatin was dissolved in pure water and blended in full range, then being electrospun to prepared nanofibers, followed by being crosslinked with glutaraldehyde vapor and heat treatment to form nanofibrous scaffold. Field emission scanning electron microscope (FESEM) images of the nanofibers manifested that the fiber average diameters decreased from 290 to 90 nm with the increasing of gelatin. In vitro degradation rates of the nanofibers were also correlated with the composition and physical properties of electrospinning solutions. Cytocompatibility of the scaffolds was evaluated by cells morphology and MTT assay. The FESEM images revealed that NIH 3T3 fibroblasts spread and elongated actively on the scaffolds with spindle‐like and star‐type shape. The results of cell attachment and proliferation on the nanofibrous scaffolds suggested that the cytotoxicity of all samples are grade 1 or grade 0, indicating that the material had sound biosafety as biomaterials. Compared with pure PVA and gelatin scaffolds, the hybrid ones possess improved biocompatibility and controllability. These results indicate that the PVA/gelatin nanofibrous have potential as skin scaffolds or wound dressing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Ultrafine 1,6-diisocyanatohexane-extended poly(1,4-butylene succinate) (PBSu-DCH) fibers were best fabricated by electrospinning from 22% w/v PBSu-DCH solution in 90:10 v/v dichloromethane/trifluoroacetic acid under the electric field of 17 kV/20 cm. The diameters of these fibers were 172 ± 3 nm. Due to their fibrous nature, the obtained PBSu-DCH fiber mats exhibited high values of advancing/receding water contact angles (i.e., 114°/79°) and porosity (69%). Indirect cytotoxicity evaluation of the PBSu-DCH fiber mats based on the viabilities of human osteosarcoma cells (SaOS-2) and mouse fibroblasts (L929) revealed that the fibrous materials did not release any substance in the level that was harmful to the cells. The potential for use of the PBSu-DCH fiber mats as substrates for bone cell culture was further evaluated in vitro with SaOS-2 in terms of the ability to support the attachment and to promote the proliferation and the differentiation of the seeded/cultured cells. Comparative studies were made against corresponding solvent-cast PBSu-DCH films. The results indicated that the bone cells grown on the surface of the fiber mats could attach, proliferate and express alkaline phosphatase (ALP), an early osteogenic proliferation marker, better than they did on the surface of the films. The evidence obtained in this work implies the potential for use of the electrospun PBSu-DCH fiber mats as bone scaffolds.  相似文献   

7.
Silk fibroin (SF)/gelatin blend nanofibers membranes as scaffolds were fabricated successfully via electrospinning with different composition ratios in formic acid. The formation of intermolecular hydrogen bonds and the conformational transition of SF provided scaffolds with excellent mechanical properties. FTIR and DTA analysis showed the SF/gelatin nanofibers had more β‐sheet structures than the pure SF nanofibers. The former's breaking tenacity increased from 0.95 up to 1.60 MPa, strain at break was 7.6%, average fiber diameter was 89.2 nm, porosity was 87%, and pore diameter was 142 nm. MTT, H&E stain, and SEM results showed that the adhesion, spreading, and proliferation of human umbilic vein endothelium cells (HUVECs) and mouse fibroblasts on the SF/gelatin nanofibers scaffolds were definitely better than that on the SF nanofibers scaffolds. The scaffolds could replace the natural ECM proteins, support long‐term cell growth, form three‐dimensional networks of the nanofibrous structure, and grow in the direction of fiber orientation. Our results prove that the addition of gelatin improved the mechanical and biological properties of the pure SF nanofibers, these SF/gelatin blend nanofiber membranes are desirable for the scaffolds and may be a good candidate for blood vessel engineering scaffolds. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Tussah silk fibroin (TSF)/chitosan (CS) composite nanofibers were prepared to mimic extracellular matrix by electrospinning with hexafluoroisopropanol (HFIP) as a solvent. The viscosity and conductivity of TSF/CS blend solution were analyzed and the morphology, secondary structure, and thermal property of TSF/CS composite fibers were investigated by SEM, 13C CP/MAS-NMR, X-ray diffraction, and DSC Techniques. The electrospinnability of TSF solution was improved significantly by adding 10 wt% CS, and morphology of electrospun TSF nanofibers changed from flat strip to cylindrical. At the same time, the average fiber diameters decreased from 542 to 312 nm, accompanying by an obvious improvement in fiber diameter uniformity. However, when the CS content in blend solution was more than 15 wt%, the diameter of electrospun TSF/CS nanofibers appeared to be polarized which can be attributed to phase separation of the two components in composite nanofibers. Blending 10 wt% CS did not change the conformation of TSF in TSF/CS composite nanofibers, and TSF in composite nanofibers at various composition ratios had mainly taken the α-helix structure. The thermal decomposition temperature of electrospun TSF/CS composite nanofibers decreased with the increase of CS content due to the lower decomposition temperature of CS. To study the cytocompatibility and cell behavior on the TSF/CS nanofibers, human renal mesangial cells were seeded onto electrospun TSF/CS composite nanofibers. Results indicated that the addition of CS promoted cell attachment and spreading on TSF nanofibers significantly, suggesting that electrospun TSF/CS composite nanofibers could be a candidate scaffold for tissue engineering.  相似文献   

9.
In this study, random Poly (?-caprolactone) (PCL):Poly glycolic acid (PGA) nanofibrous scaffold with various PCL:PGA compositions were fabricated by electrospinning method. The nanofibrous scaffolds were characterized by SEM, contact angle measurement, ATR-FTIR, and tensile measurements. The results showed that with the increase of the concentration of PGA in spinning blend solution, the average diameter of nanofibers, hydrophilicity, and mechanical properties of the nanofibrous scaffolds increased. An in vitro degradation study of PCL:PGA nanofibers were conducted in phosphate-buffered saline, pH 7.2. The experiments confirm that increasing of PGA provides faster degradation rate in blended nanofibers. To assay the biocompatibility and cell behavior on the nanofibrous scaffolds, cell attachment and spreading of cardiac progenitor cells seeded on the scaffolds were studied. The results indicate that among electrospun nanofibrous scaffolds, the most appropriate candidate for myocardial tissue engineering scaffolds is PCL:PGA (65:35).  相似文献   

10.
Electrospun nanofibers have attracted tremendous attention because of their similar structure with extracellular matrix. In this work, the polydopamine (PDA) coating layer was first applied to modify hydroxyapatite (HA) nanoparticles and obtain functional HA@PDA nanoparticles. Subsequently, the polylactic acid (PLA)/HA@PDA composite nanofibers were prepared via electrospinning. The hydrophilicity and water absorption of PLA/HA@PDA composite nanofibers were larger than those of PLA and PLA/HA composite nanofibers. The thermal stability, static and dynamic mechanical properties of PLA/HA@PDA composite nanofibers significantly increased because the PDA coating layer on the surface of the HA nanoparticles acted like a glue-like transition layer, which led to an increase in interfacial adhesion between HA@PDA nanoparticles and the PLA matrix. The attachment and viability of mouse embryonic osteoblast cells (MC3T3-E1) cultured on the PLA/HA@PDA composite nanofibers were significantly increased compared with those cultured on the PLA and PLA/HA composite nanofibers. These results suggested that the PLA/HA@PDA composite nanofibers have superior mechanical and biological properties, which makes it potentially useful for tissue engineering scaffolds.  相似文献   

11.
Chunyi Tang  Haiqing Liu 《Polymer》2007,48(15):4482-4491
Random and alternating poly(styrene-co-maleic anhydrides) (SMAs) with respective maleic anhydride (MAh) content of 32 and 48% were synthesized through radical polymerization. SMA nanofibers with diameter down to 180 nm were generated by electrospinning from solvents acetone, dimethylformamide (DMF), and their mixtures. Fiber diameter increased dramatically when the SMA concentration in the spinning solution reached to a critical point where the SMA chains are extensively entangled. The diameter of SMA nanofiber decreased with increasing DMF content in the mixture, but beads are often accompanied as DMF content is over 50%. The optimum acetone/DMF ratio was found to be 2:1, in which continuous electrospinning was achieved and bead-free nanofibers were obtained. SMA nanofibers with MAh content of 32 and 48% were crosslinked with diethyleneglycol and subsequently hydrolyzed in NaOH/EtOH to turn SMA into crosslinked sodium form SMA (SMA-Na) hydrogel nanofiber. These hydrogel nanofibers were able to retain fiber form after immersing in water for 24 h. Their water absorption ratio was up to 37.6 and 8.2 g/g in distilled water and 0.25 N NaCl aq. solution, respectively.  相似文献   

12.
Chitosan (CS)-based nanofibrous scaffolds are very promising in tissue engineering applications. However, electrospinning of CS is not possible unless using toxic solvents such as trifluoroacetic acid or by blending with other polymers. In the present study, we investigated CS-based nanofibers' fabrication by blending it with kefiran as a natural polysaccharide. A series of solutions with various CS to kefiran ratios were prepared and underwent electrospinning. The effects of main process parameters, including applied voltage and needle tip-to-collector distance on nanofibers' diameter and morphology, were also studied. Nanofibers containing 80% CS and 20% Kefiran with an average diameter of 81 ± 17 nm were successfully electrospun. Thermogravimetric analysis indicated the presence of both polymers in blend nanofibers. The diameter of CS/kefiran nanofibers increased with enhanced applied voltage, while needle tip-to-collector distance did not significantly affect the mean diameters. Appropriate viability of l929 cells on the obtained scaffolds was demonstrated utilizing Alamar blue assay. Also, cell attachment onto the fiber surface was confirmed by scanning electron microscopy. Results indicated that CS/kefiran nanofibrous scaffolds would be promising for tissue engineering applications.  相似文献   

13.
Biomimetic scaffolds have been investigated for vascular tissue engineering for many years. However, the design of an ideal biodegradable vascular scaffold is still in progress. The optimization of poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) blend composition was performed to provide the designed scaffolds with adequate mechanical properties and favorable biocompatibility for the intended application. By systematically varying the weight ratio of PLGA and SF, we could control fiber diameter and hydrophilicity as well as mechanical properties of the fibrous scaffolds. These scaffolds with a weight ratio of PLGA/SF at 70/30 exhibited excellent performance, such as tensile strength of 1.5 ± 0.1 MPa, and elongation at break of 77.4 ± 6.4%. Therefore, PLGA/SF scaffold with a weight ratio of 70/30 was chose as the matrix because it matches at best the mechanical demands for application in vascular tissue engineering. In order to promote the endothelialization of electrospun scaffolds, we used pEGFP-ZNF580 plasmid (pZNF580) complexes to modify the electrospun scaffolds by electrospraying technique. pZNF580 complexes were prepared from pZNF580 and microparticles (MPs) of amphiphilic copolymer methoxy-poly(ethylene glycol)-block-poly(3(S)-methyl-2,5-morpholinedione-co-glycolide)-graft-polyethyleneimine. Negatively charged PLGA/SF fibers adsorbed the positively charged MPs via physical deposition and electrostatic force. Scanning electron microscope image indicated the forming of composite scaffold and MPs did not change fiber’s shape and 3-D structure. Cell culture experiments demonstrated that the scaffolds modified with MPs/pZNF580 complexes could promote human umbilical vein endothelial cell growth and inhibit human umbilical artery smooth muscle cell proliferation. Our results indicated that the composite scaffolds with MPs/pZNF580 complexes could be used as a potential scaffold for vascular tissue engineering.  相似文献   

14.
Flurbiprofen axetil (FA)‐loaded coaxial electrospun poly(vinyl pyrrolidone) (PVP)–nanopoly(lactic‐co‐glycolic acid) core–shell composite nanofibers were successfully fabricated by a facile coaxial electrospinning, and an electrospun drug‐loaded system was formed for anti‐adhesion applications. The FA, which is a kind of lipid microsphere nonsteroidal anti‐inflammatory drug, was shown to be successfully adsorbed in the PVP, and the formed poly(lactic‐co‐glycolic acid) (PLGA)/PVP/FA composite nanofibers exhibited a uniform and smooth morphology. The cell viability assay and cell morphology observation revealed that the formed PLGA/PVP/FA composite nanofibers were cytocompatible. Importantly, the loaded FA within the PLGA/PVP coaxial nanofibers showed a sustained‐release profile and anti‐adhesion activity to inhibit the growth of the IEC‐6 and NIH3T3 model cells. With the significantly reduced burst‐release profile, good cytocompatibility, and anti‐adhesion activity, the developed PLGA/PVP/FA composite nanofibers were proposed to be a promising material in the fields of tissue engineering and pharmaceutical science. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41982.  相似文献   

15.
An electrospinning method was used to fabricate chitin nanofibous matrix for wound dressings. Chitin was depolymerized by gamma irradiation to improve its solubility. The electrospinning of chitin was performed with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as a spinning solvent. Morphology of as-spun and deacetylated chitin (chitosan) nanofibers was investigated by scanning electron microscopy. Although as-spun chitin nanofibers had the broad fiber diameter distribution, most of the fiber diameters are less than 100 nm. From the image analysis, they had an average diameter of 110 nm and their diameters ranged from 40 to 640 nm. For deacetylation, as-spun chitin nanofibous matrix was chemically treated with a 40% aqueous NaOH solution at 60 or 100 °C. With the deacetylation for 150 min at 100 °C or for 1day at 60 °C, chitin matrix was transformed into chitosan matrix with degree of deacetylation (DD) ∼85% without dimensional change (shrinkage). This structural transformation from chitin to chitosan was confirmed by FT-IR and WAXD.  相似文献   

16.
Tungsten oxide (WO3) nanofibers with different crystalline morphologies and various particle sizes were fabricated using an electrospinning technique. The nanofibers were prepared from mixtures of polyvinyl alcohol (PVA) and ammonium metatungstate hydrate (AMH) of various concentrations ranging from 4.2%w/v to 50.0%w/v. After calcination at 500 °C for 2 h, the nanofibers were observed to have a monoclinic crystal structure with diameters ranging from 30 to 250 nm. AMH concentration had a large influence on the resulting nanofiber morphology. Very low AMH concentration of 4.2%w/v led to the formation of WO3 nanofibers having a very large area of monocrystalline structure. Higher AMH concentrations result in polycrystalline WO3 nanofibers with joined nanoparticles along the fiber axis. The average particle size within the nanofibers increased from 29 to 66 nm as the AMH concentration increased from 8.3%w/v to 50%w/v. At these precursor concentration levels, primary particles were formed before PVA was completely burnt off, resulting in agglomeration of primary particles along the nanofiber axis.  相似文献   

17.
An additional centrifugal field applied to an electrostatic field in a novel electrospinning technique was proposed in this study. An additional centrifugal field can not only remove bending instability of electrically charged liquid jets during the electrospinning process but can also fabricate aligned and molecularly oriented nanofibers. The results indicated that combining a strong stretching force from an additional centrifugal field and an electrostatic field can be used to align polymer chains parallel to the nanofiber axis, producing polyacrylonitrile (PAN) nanofibers with superior molecular orientation and mechanical properties. The optimal stretching force of an electrically rotating viscoelastic jet was obtained from high-speed videography and dimensionless groups (Re, We, and Oh numbers) analysis. The dichroic ratio (D) was 0.78, and the chain orientation factor (f), measured via Polarized FT-IR was 0.21. These measurements indicated an increase in the molecular orientation for the fabricated PAN nanofibers via the optimal stretching force. The elastic modulus of PAN nanofibers with f = 0.21 was 6.29 GPa and 4.55 GPa when measured by atomic force microscopy (AFM) and nanoindenter experiments, respectively. These results demonstrated that superior mechanical properties of PAN nanofibers could be improved by conducting the proposed electrospinning technique. Furthermore, carbon nanofibers produced from the optimal PAN nanofibers through the proposed method could potentially be applied for the reinforcement of composites.  相似文献   

18.
The authors report herein in vitro antibacterial property and osteoblast biocompatibility of electrospun Ag doped HAp/PHBV (Ag-HAp/PHBV) composite nanofibers as an osteoconductive and antibacterial material for bone tissue engineering applications. Ag-HAp powders were synthesized and stable composite suspensions of Ag-HAp/PHBV were prepared with the aid of a cationic surfactant DTAB for the electrospinning process. Continuous and uniform composite nanofibers were generated within a diameter range of 400–900 nm. Obtained nanocomposite scaffolds provide a favorable environment for bone mineralization, SaOS-2 osteoblastic cell attachment and growth as well as they present antibacterial activity against E. coli and S. aureus bacteria without any noticeable cytotoxic effect.  相似文献   

19.
Cartilage tissue engineering is one of the interesting approaches used for repairing cartilage injuries. This study reports the fabrication of polyvinyl alcohol/alginate sulfate (PVA/ALG-S) nanofibrous mats as a functional support for chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs). The PVA/ALG-S nanofibers were obtained through electrospinning of PVA solutions containing 10, 20, and 30 wt% of ALG-S. The appearance of a band at 833 cm−1 assigned to the symmetrical C O S vibration associated to a C O SO3 group confirmed the presence of ALG-S in nanofibrous mat. The SEM images illustrated the bead-free and smooth morphology of PVA/ALG-S nanofibers with a mean diameter of 185 ± 0.06 nm. The MTT assay of the hBM-MSCs seeded on scaffolds indicated the appropriate cytocompatibility of nanofibrous PVA/ALG-S scaffolds. Furthermore, the appropriate attachment and spreading of the hBM-MSCs based on SEM images, and their differentiation to the chondrocyte-like cells accompanied by a decrease in cell growth on MTT analysis and more color absorption in alician blue staining indicated the effective role of alginate sulfate on cell differentiation. Finally, the expression of Type II collagen by RT-PCR and immunocytochemistry analyses revealed the chondrogenic differentiation of hBM-MSCs on alginate sulfate nanofibers.  相似文献   

20.
Yiliang Liao  Hao Fong 《Polymer》2008,49(24):5294-5299
The aim of this study was to investigate the preparation, characterization, and encapsulation/release performance of an electrospun composite nanofiber mat. The hypothesis was that the composite nanofiber mat with nano-scaled drug particles impregnated in biocompatible and biodegradable polymer nanofibers can serve as an innovative type of tissue engineering scaffold with desired and controllable drug encapsulation/release properties. To test the hypothesis, the composite nanofiber mat electrospun from an emulsion consisting of poly(lactic-co-glycolic acid) (PLGA) Rhodamine B (a model compound to simulate drugs), sorbitan monooleate (Span-80, a non-ionic emulsifier/surfactant that is presumably non-toxic/safe for cell-growth), chloroform, DMF, and distilled water was prepared and characterized; and the Rhodamine B encapsulation/release profile in phosphate buffered saline (pH = 7.4) was recorded and analyzed. For comparison purposes, two additional nanofiber mats electrospun from (1) a solution containing PLGA and Rhodamine B, and (2) a solution containing PLGA, Rhodamine B, and Span-80 were also prepared and assessed as the control samples. The results indicated that the composite nanofiber mat electrospun from the emulsion had the most desired and controllable Rhodamine B encapsulation/release profile and the excellent morphological sustainability; thus, it could be utilized as both a drug encapsulation/release vehicle and a tissue engineering scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号