首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The stimulus/response properties of 20 mechanosensory receptors in the cricket cercal sensory system were studied using electrophysiological techniques. These receptors innervated filiform hairs of various lengths and directional selectivities. Previous studies have characterized the sensitivity of such cells to the direction of air currents and to the amplitude of sinusoidal stimuli. In the experiments reported here, the quantity and quality of information encoded in the receptors' elicited responses about the dynamics of more complex air current waveforms were characterized. 2. Based on a white analysis of receptor response properties, the median frequency of each receptor's frequency tuning curve was found to be strongly correlated with the length of its associated mechanosensory hair. The receptors connected to hairs > 900 microns encoded frequencies below approximately 150 Hz very accurately and the receptors connected to shorter hairs encoded progressively higher bands of frequencies. These results were interpreted within the constraints imposed by the biomechanics of the air current-to-cercus boundary. 3. The encoding accuracy was expressed in the information theoretic units of bits/second, which characterizes the information transmission rate of a receptor. The information rates of the neuronal spike trains ranged from 75 to 220 bits/s. The information transmission rate was not correlated with the length of the mechanosensory hair. The average amount of information transmitted per action potential was negatively correlated with receptor hair length and ranged between 0.6 and 3.1 bits/spike. Decoding of the receptor responses was restricted to linear transformations of the spike trains. 4. The stimulus/response latencies of the different receptors ranged between 5 and 11 ms, and the integration time of the receptors ranged between 8 and 30 ms. The latency of a receptor was only weakly correlated with the length of its associated hair, and a receptor's integration time was correlated with hair length. 5. The stimulus/response phase difference for receptor cells that innervated hairs longer than approximately 800 microns increased with frequency > 50 Hz. The phase responses for receptor cells connected to hairs < 800 microns did not vary for frequencies > 50 Hz.  相似文献   

2.
Acoustical stimulation causes displacement of the sensory hair cells relative to the otoliths of the fish inner ear. The swimbladder, transforming the acoustical pressure component into displacement, also contributes to the displacement of the hair cells. Together, this (generally) yields elliptical displacement orbits. Alternative mechanisms of fish directional hearing are proposed by the phase model, which requires a temporal neuronal code, and by the orbit model, which requires a spike density code. We investigated whether the directional selective response of auditory neurons in the midbrain torus semicircularis (TS; homologous to the inferior colliculus) is based on spike density and/or temporal encoding. Rainbow trout were mounted on top of a vibrating table that was driven in the horizontal plane to simulate sound source direction. Rectilinear and elliptical (or circular) motion was applied at 172 Hz. Generally, responses to rectilinear and elliptical/circular stimuli (irrespective of direction of revolution) were the same. The response of auditory neurons was either directionally selective (DS units, n = 85) or not (non-DS units, n = 106). The average spontaneous discharge rate of DS units was less than that of non-DS units. Most DS units (70%) had spontaneous activities < 1 spike per second. Response latencies (mode at 18 ms) were similar for both types of units. The response of DS units is transient (19%), sustained (34%), or mixed (47%). The response of 75% of the DS units synchronized to stimulus frequency, whereas just 23% of the non-DS responses did. Synchronized responses were measured at stimulus amplitudes as low as 0.5 nm (at 172 Hz), which is much lower than for auditory neurons in the medulla of the trout, suggesting strong convergence of VIIIth nerve input. The instant of firing of 42% of the units was independent of stimulus direction (shift <15 degrees), but for the other units, a direction dependent phase shift was observed. In the medial TS spatial tuning of DS units is in the rostrocaudal direction, whereas in the lateral TS all preferred directions are present. On average, medial DS units have a broader directional selectivity range, are less often synchronized, and show a smaller shift of the instant of firing as a function of stimulus direction than lateral DS units. DS response characteristics are discussed in relation to different hypotheses. We conclude that the results are more in favor of the phase model.  相似文献   

3.
Slow evoked cortical potentials from ten young normal-hearing subjects have been recorded as responses to linear frequency ramps of a continuous pure tone. Frequency changes from 10 to 500 Hz were studied; the rate of frequency change was varied from 0.02 to 50 kHz/s while the duration of the change was varied from 10 to 500 ms. The rate of frequency change was shown to have the greatest bearing on the responses except for frequency ramp durations below 50 ms and frequency changes below 50 Hz. The base frequencies (250-4000 Hz) and sound levels (20-80 dB HL) exerted an influence on the evoked responses that was qualitatively similar to their influence on behavioral thresholds. The direction of the frequency sweep had no significant influence on the evoked responses. A functional model is proposed in which the time derivate of the signal frequency is integrated with an adaptable integration time that is controlled by the rate of the frequency change.  相似文献   

4.
Evaluated the influence of physical properties of sensory stimuli (visual intensity, direction, and velocity; auditory intensity and location) on sensory activity and multisensory integration of superior colliculus (SC) neurons in awake, behaving primates. Two male monkeys were trained to fixate a central visual fixation point while visual and/or auditory stimuli were presented in the periphery. Visual stimuli were always presented within the contralateral receptive field of the neuron whereas auditory stimuli were presented at either ipsi- or contralateral locations. 66 of the 84 SC neurons responsive to these sensory stimuli had stronger responses when the visual and auditory stimuli were combined at contralateral locations than when the auditory stimulus was located on the ipsilateral side. This trend was significant across the population of auditory-responsive neurons. In addition, 31 SC neurons were presented a battery of tests in which the quality of one stimulus of a pair was systematically manipulated. Eight of these neurons showed preferential responses to stimuli with specific physical properties, and these preferences were not significantly altered when multisensory stimulus combinations were presented. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
Sounds arriving at the eardrum are filtered by the external ear and associated structures in a frequency and direction specific manner. When convolved with the appropriate filters and presented to human listeners through headphones, broadband noises can be precisely localized to the corresponding position outside of the head (reviewed in Blauert, 1997). Such a 'virtual auditory space' can be a potentially powerful tool for neurophysiological and behavioral work in other species as well. We are developing a virtual auditory space for the barn owl, Tyto alba, a highly successful auditory predator that has become a well-established model for hearing research. We recorded catalogues of head-related transfer functions (HRTFs) from the frontal hemisphere of 12 barn owls and compared virtual and free sound fields acoustically and by their evoked neuronal responses. The inner ca. 1 cm of the ear canal was found to contribute little to the directionality of the HRTFs. HRTFs were recorded by inserting probetube microphones to within about 1 or 2 mm of the eardrum. We recorded HRTFs at frequencies between 2 and 11 kHz, which includes the frequencies most useful to the owl for sound localization (3-9 kHz; Konishi, 1973). Spectra of virtual sounds were within +/- 1 dB of amplitude and +/- 10 degrees of phase of the spectra of free field sounds measured near to the eardrum. The spatial pattern of responses obtained from neurons in the inferior colliculus were almost indistinguishable in response to virtual and to free field stimulation.  相似文献   

6.
Intracellular in vivo recordings of physiologically identified inferior colliculus central nucleus (ICc) auditory neurons (n = 71) were carried out in anesthetized guinea pigs. The neuronal membrane characteristics are described showing mainly quantitative differences with a previous report [Nelson, P.G. and Erulkar, S.D., J. Neurophysiol., 26 (1963) 908-923]. The spontaneous spike activity was consistent with the discharge pattern of most extracellularly recorded units. The action potentials showed different spike durations, short and long, and some of them exhibited hyperpolarizing post-potentials. There were also differences in firing rate. The ICc neurons exhibited irregular activity producing spike trains as well as long silent periods (without spikes). Intracellular current injection revealed membrane potential adaptation and shifts that outlasted the electrical stimuli by 20-30 ms. Both evoked synaptic potentials and the spike activity in response to click and tone-burst stimulation were analyzed. Depolarizing-hyperpolarizing synaptic potentials were found in response to contralateral and binaural sound stimulation that far outlasted the stimulus (up to 90 ms). When ipsilaterally stimulated, inhibitory responses and no-responses were also recorded. Although few cells were studied, a similar phenomenon was observed using tone-burst stimulation; moreover, a good correlation was obtained between membrane potential shifts and the triggered spikes (input-output relationship). These in vivo results demonstrate the synaptic activity underlying many of the extracellularly recorded discharge patterns. The data are consistent with the known multi-synaptic ascending pathway by which signals arrive at the ICc as well as the descending corticofugal input that may contribute to the generation of long duration post-synaptic potentials.  相似文献   

7.
The neural representation of sound azimuth in auditory cortex most often is considered to be average firing rate, and azimuth tuning curves based thereupon appear to be rather broad. Coincident firings of simultaneously recorded neurons could provide an improved representation of sound azimuth compared with that contained in the firing rate in either of the units. In the present study, a comparison was made between local field potentials and several measures based on unit firing rate and coincident firing with respect to their azimuth-tuning curve bandwidth. Noise bursts, covering a 60-dB intensity range, were presented from nine speakers arranged in a semicircular array with a radius of 55 cm in the animal's frontal half field. At threshold intensities, all local field potential (LFP) recordings showed preferences for contralateral azimuths. Multiunit recordings showed in 74% a threshold for contralateral azimuths, in 16% for frontal azimuths, and in only 5% showed an ipsilateral threshold. The remaining 5% were not spatially tuned. Representations for directionally sensitive units based on coincident firings provided significantly sharper tuning (50-60 degrees bandwidth at 25 dB above the lowest threshold) than those based on firing rate (bandwidths of 80-90 degrees). The ability to predict sound azimuth from the directional information contained in the neural population activity was simulated by combining the responses of the 102 single units. Peak firing rates and coincident firings with LFPs at the preferred azimuth for each unit were used to construct a population vector. At stimulus levels of >/=40 dB SPL, the prediction function was sigmoidal with the predicted frontal azimuth coinciding with the frontal speaker position. Sound azimuths >45 degrees from the midline all resulted in predicted values of -90 or 90 degrees, respectively. No differences were observed in the performance of the prediction based on firing rate or coincident firings for these intensities. This suggests that although coincident firings produce narrower azimuth tuning curves, the information contained in the overall neural population does not increase compared with that contained in a firing rate representation. The relatively poor performance of the population vector further suggests that primary auditory cortex does not code sound azimuth by a globally distributed measure of peak firing rate or coincident firing.  相似文献   

8.
Recordings were made in the peroneal nerve of healthy volunteer subjects from C-mechano-heat (CMH) nociceptors (n=25) with their receptive fields in the skin on the dorsum of the foot. The investigation focused on afferent single C-fiber activity induced by short (200 ms) high-intensity argon-laser light pulses projected to localized spots of the skin. Cutaneous heat stimulation with the argon laser, 2-3 times the activation threshold, induced inter-burst spike frequencies in the nerve, reaching 50 Hz, while mechanical stimulation 10-20 times threshold only evoked frequencies reaching 10 Hz. The decrease in conduction velocity of action potentials in the C-fiber afferents following mechanical and heat stimulation was closely related to the degree of activation. Following a laser pulse of 200 ms, a spike pattern with highly reproducible inter-spike intervals was evoked with a fast saturation. On the contrary, a high variability in the number of action potentials evoked by both heat and mechanical stimuli was found, depending on the location of stimuli within the receptive field. A relation between the conduction velocity and the peak firing within the spike train following laser stimulation was detected. Heat and mechanical stimulation activated single C-fibers in matching spots within the same skin areas, in line with the assumption that the two modalities in the CMH-fibers share matching morphological cutaneous substrates. No correlation was found in thresholds or excitability to mechanical and heat stimulation, respectively. This suggests that subsets of receptors exist within nerve endings of the cutaneous receptive fields, with the ability to generate action potentials independent of heat and mechanical stimuli. Unexpectedly, no signs of sensitization or other inflammatory responses were observed after repeated laser pulses; on the contrary, a rapidly developing fatigue was observed when single spots were repeatedly stimulated. However, no fatigue was observed if neighboring spots were stimulated, indicating a localized generator of the fatigue. In each subject, a good correlation was observed between the reported pain sensation and the activity evoked in the afferent C-fibers by the laser. However, the magnitude of the reported pain sensation to comparable degrees of C-fiber activation showed a high variability between different subjects. A fairly good subjective estimate of the afferent-fiber activation was observed when skin spots from 3- down to 1-mm diameter were stimulated. In a few individuals, no painful sensation was reported when the stimulated spots were reduced to 1-mm diameter, despite the occurrence of multiple spikes in single C-fiber afferents, amplifying the importance of spatial summation in the perception of pain.  相似文献   

9.
1. To study the encoding of input currents into output spike trains by regular-spiking cells, we recorded intracellularly from slices of the guinea pig visual cortex while injecting step, sinusoidal, and broadband noise currents. 2. When measured with sinusoidal currents, the frequency tuning of the spike responses was markedly band-pass. The preferred frequency was between 8 and 30 Hz, and grew with stimulus amplitude and mean intensity. 3. Stimulation with broadband noise currents dramatically enhanced the gain of the spike responses at low and high frequencies, yielding an essentially flat frequency tuning between 0.1 and 130 Hz. 4. The averaged spike responses to sinusoidal currents exhibited two nonlinearities: rectification and spike synchronization. By contrast, no nonlinearity was evident in the averaged responses to broadband noise stimuli. 5. These properties of the spike responses were not present in the membrane potential responses. The latter were roughly linear, and their frequency tuning was low-pass and well fit by a single-compartment passive model of the cell membrane composed of a resistance and a capacitance in parallel (RC circuit). 6. To account for the spike responses, we used a "sandwich model" consisting of a low-pass linear filter (the RC circuit), a rectification nonlinearity, and a high-pass linear filter. The model is described by six parameters and predicts analog firing rates rather than discrete spikes. It provided satisfactory fits to the firing rate responses to steps, sinusoids, and broadband noise currents. 7. The properties of spike encoding are consistent with temporal nonlinearities of the visual responses in V1, such as the dependence of response frequency tuning and latency on stimulus contrast and bandwidth. We speculate that one of the roles of the high-frequency membrane potential fluctuations observed in vivo could be to amplify and linearize the responses to lower, stimulus-related frequencies.  相似文献   

10.
The temporal response patterns of auditory-nerve fibers to low-frequency tones were studied in anesthetized cats using period histograms. 'Peak-splitting' was observed mostly in fibers with lower characteristic frequencies (CF < 2 kHz) and with lower-frequency stimulation (< or = 500 Hz). The occurrence of peak-splitting, the number of peaks, and the time between the peaks were all dependent upon the stimulus frequency. The phases of responses, although complex functions of stimulus frequency, intensity, and the fiber's CF, clearly showed traveling-wave characteristics for all frequencies at or above 100 Hz. The amount of phase change with intensity was generally small for lower-frequency stimuli (< approximately 50 degrees), although larger phase changes (e.g., approximately 180 degrees) were occasionally seen with higher-frequency stimuli. At 50 and 100 Hz, the phase of neural responses in the basal region roughly corresponds to the maximum velocity of the basilar membrane towards scala tympani (as inferred from cochlear microphonic recordings).  相似文献   

11.
Auditory brainstem potential components II and V are delayed in the contralateral recording in comparison with that ipsilateral to the stimulus. Wave III is recorded earlier contralaterally. The effect of increasing stimulus repetition rate on the ipsilateral/contralateral latency differences in these components was examined. There is a progressive increase in latency from Wave I to Wave V ipsilaterally with an increase in stimulus rate; however, contralaterally there is no further increase in latency after Wave III. At 40 Hz stimulus rate, therefore, the ipsi/contra difference in the latency of Wave V disappears, suggesting that there is a differential effect of peripheral and central adaptation on the ipsilateral and contralateral auditory pathways.  相似文献   

12.
We recorded auditory-evoked magnetic responses with a whole-scalp 122-channel neuromagnetometer from seven adult patients with unilateral conductive hearing loss before and after middle ear surgery. The stimuli were 50-msec 1-kHz tone bursts, delivered to the healthy, nonoperated ear at interstimulus intervals of 1, 2, and 4 seconds. The mean preoperative pure-tone average in the affected ear was 57 dB hearing level; the mean postoperative pure-tone average was 17 dB. The 100-msec auditory-evoked response originating in the auditory cortex peaked, on average, 7 msecs earlier after than before surgery over the hemisphere contralateral to the stimulated ear and 2 msecs earlier over the ipsilateral hemisphere. The contralateral response strengths increased by 5% after surgery; ipsilateral strengths increased by 11%. The variation of the response latency and amplitude in the patients who underwent surgery was similar to that of seven control subjects. The postoperative source locations did not differ noticeably from preoperative ones. These findings suggest that temporary unilateral conductive hearing loss in adult patients modifies the function of the auditory neural pathway.  相似文献   

13.
Periodic envelope or amplitude modulations (AM) with periodicities up to several thousand Hertz are characteristic for many natural sounds. Throughout the auditory pathway, signal periodicity is evident in neuronal discharges phase-locked to the envelope. In contrast to lower levels of the auditory pathway, cortical neurons do not phase-lock to periodicities above about 100 Hz. Therefore, we investigated alternative coding strategies for high envelope periodicities at the cortical level. Neuronal responses in the primary auditory cortex (AI) of gerbils to tones and AM were analysed. Two groups of stimuli were tested: (1) AM with a carrier frequency set to the unit's best frequency evoked phase-locked responses which were confined to low modulation frequencies (fms) up to about 100 Hz, and (2) AM with a spectrum completely outside the unit's frequency-response range evoked completely different responses that never showed phase-locking but a rate-tuning to high fms (50 to about 3000 Hz). In contrast to the phase-locked responses, the best fms determined from these latter responses appeared to be topographically distributed, reflecting a periodotopic organization in the AI. Implications of these results for the cortical representation of the perceptual qualities rhythm, roughness and pitch are discussed.  相似文献   

14.
Unit activity was recorded extracellulary from neurons of the cat medulla following electrical stimulation of the ipsilateral and/or contralateral cannine tooth pulps. The majority of the cells (67%) were only responsive to ipsilateral stimulation. However, many (28%) responded to stimulation of either canine pulp and a few (5%) responsed to contralateral stimulation alone. The neurons were localized histologically in the necleus proprius of the rostral trigeminal nucleus caudalis (NVCaud) and in dorsal portions of the ventromedially contiguous lateral reticular formation (LRF). Cells exclusively responsive to ipsilateral stimuli had a relatively wide dorsoventral distribution. In contrast, 'bilateral' and 'contralateral' cells were situated only in the deep NVCaud-LRF border zone or in immediately adjacent portions of the LRF. Generally, ipsilateral stimuli evoked response bursts with shorter latencies, more spike potentials and briefer interspike intervals than equivalent contralateral stimuli. In experiments designed to study afferent interactions, a conditioning stimulus, applied to either the ipsilateral or the contralateral canine, preceded a test stimulus applied to the other canine at predetermined interstimulus intervals. Responses to the test stimulus were either totally or partially suppressed when intervals of moderate duration (90-500 msec) were used. However, responses to the test stimulus frequently were enhanced when the intervals were breif (less than or equal to 60 msec) or when the teeth were stimulated simultaneously. The results reveal that bilateral afferents from the pulps of the canine teeth converge upon neurons of bulbar trigeminal structures, that the neurons are differentially responsive to the activation of ipsilateral and contralateral pulpal receptors and that bilateral afferent barrages originating in the canine pulps interact to modulate the firing patterns of the neurons.  相似文献   

15.
Following monoaural stimulation, long latency auditory evoked potentials (LLAEPs) recorded from contralateral temporal areas have a shorter latency and larger amplitude than those recorded from the ipsilateral temporal areas. This observation agrees with the operational model drawn up in 1967 by Kimura, which assumes that only anatomically prevailing crossed auditory pathways are active during dichotic hearing, while direct pathways are inhibited. The inputs may then be conveyed to the contralateral cortex, from where they finally reach the ipsilateral temporal areas by means of interhemispheric commissures. It is this mechanism which may underline the right ear advantage for verbal stimuli and the left ear advantage for melodies observed when administering dichotic listening tasks. With the aim of verifying this hypothesis, we recorded temporal LLAEPs in a 21 year-old woman suffering from complex partial seizures, whose CT scan and MRI showed corpus callosum agenesia. Our data support the hypothesis that ipsilateral pathways are greatly inhibited by the contralateral pathways, and therefore auditory stimuli can be supposed to reach the contralateral auditory cortex from where they are transferred through the corpus callosum to the ipsilateral auditory cortex.  相似文献   

16.
An eventual modulation of the afferent auditory message by the cortex is the subject of this study. To test this hypothesis, clicks (10 Hz, 100 microseconds) of white noise of 40 and 70 dB Hl were sent alternatively into the ears of normally hearing volunteers, while the brainstem evoked potentials were recorded. The subjects were asked to focus or relax their attention on one or other ear. Thirty subjects aged less than 25 years (15 men and 15 women) with normal hearing level, were split into two groups. The first group was asked to focus first on the more strongly stimulated ear (70 dB), the second group on the more weakly stimulated one (40 dB). Each subject received (1) without any instruction about attention: 40 dB on the left ear (L), 70 dB on the right ear (R); 40 dB then 70 dB bilateral; (2) 2 runs with 40 dB on the L and 70 dB on the R focussing on the most or less strongly stimulated ear; (3) a run without instruction with 70 dB on the L and 40 dB on the R, and (4) two runs with 70 dB on the L and 40 dB on the R focussing enough on the more or less strongly stimulated ear. On the evoked potentials simultaneously recorded, amplitudes and latencies of the pikes were measured and compared. From these experiments, the following elements were obtained. (1) The measured potentials were always caused by ipsilateral stimuli. (2) Focussing on left or right ear was not equivalent. (3) A gender difference appeared in the brainstem auditory responses. (4) Preferential attention paid to the left ear was more efficient than to the right one. (5) Attention can alter the whole nervous pathway with considerable lengthening of O-I, O-III, O-V, III-V, I-V but not I-III latencies. The III wave amplitude generally decreased on the side where attention was focussed while V waves seemed not to vary. These first results indicate that a cortico-efferent pathway stimulated by the attention plays a role in the auditory responses modifying the afferent message. These effects were not the same among the side focussing attention and among sex.  相似文献   

17.
Single medial olivocochlear (MOC) neurons were recorded from the cochlea of the anesthetized guinea pig. We used tones and noise presented monaurally and binaurally and measured responses for sounds up to 105 dB sound pressure level (SPL). For monaural sound, MOC neuron firing rates were usually higher for noise bursts than tone bursts, a situation not observed for afferent fibers of the auditory nerve that were sampled in the same preparations. MOC neurons also differed from afferent fibers in having less saturation of response. Some MOC neurons had responses that continued to increase even at high sound levels. Differences between MOC and afferent responses suggest that there is convergence in the pathway to olivocochlear neurons, possibly a combination of inputs that are at the characteristic frequency (CF) with others that are off the CF. Opposite-ear noise almost always facilitated the responses of MOC neurons to sounds in the main ear, the ear that best drives the unit. This binaural facilitation depends on several characteristics that pertain to the main ear: it is higher in neurons having a contralateral main ear (contra units), it is higher at main-ear sound levels that are moderate (approximately 65 dB SPL), and it is higher in neurons with low discharge rates to main-ear stimuli. Facilitation also depends on parameters of the opposite-ear sound: facilitation increases with noise level in the opposite ear until saturating, is greater for continuous noise than noise bursts, and is usually greater for noise than for tones. Using optimal opposite-ear facilitators and high-level stimuli, the firing rates of olivocochlear neurons range up to 140 spikes/s, whereas for moderate-level monaural stimuli the rates are <80 spikes/s. At high sound levels, firing rates of olivocochlear neurons increase with CF, an increase that may compensate for the known lower effectiveness of olivocochlear synapses on outer hair cells responding to high frequencies. Overall, our results demonstrate a high MOC response for binaural noise and suggest a prominent role for the MOC system in environments containing binaural noise of high level.  相似文献   

18.
The dorsal nucleus of the lateral lemniscus (DNLL) is a binaural nucleus whose neurons are excited by stimulation of the contralateral ear and inhibited by stimulation of the ipsilateral ear. Here we report on several features of the ipsilaterally evoked inhibition in 95 DNLL neurons of the mustache bat. These features include its dependence on intensity, its tuning and the types of stimuli that are capable of evoking it. Inhibition was studied by evoking discharges with the iontophoretic application of glutamate, and then evaluating the strength and duration of the inhibition of the glutamate evoked background activity produced by stimulation of the ipsilateral ear. Excitatory responses were evoked by stimulation of the contralateral ear with best frequency (BF) tone bursts. Glutamate evoked discharges could be inhibited in all DNLL neurons and the inhibition often persisted for periods ranging from 10 to 50 ms beyond the duration of the tone burst that evoked it. The duration of the persistent inhibition increased with stimulus intensity. Stimulus duration had little influence on the duration of the persistent inhibition. Signals as short as 2 ms suppressed discharges for as long as 30 ms after the signal had ended. The frequency tuning of the total period of inhibition and the period of persistent inhibition were both closely matched to the tuning evoked by stimulation of the contralateral ear. Moreover, the effectiveness of complex signals for evoking persistent inhibition, such as brief FM sweeps and sinusoidally amplitude and frequency modulated signals, was comparable to that of tone bursts at the neuron's excitatory BF, so long as the complex signal contained frequencies at or around the neuron's excitatory BF. We also challenged DNLL cells with binaural paradigms. In one experiment, we presented a relatively long (40 ms) BF tone burst of fixed intensity to the contralateral ear, which evoked a sustained discharge, and a shorter, 10 ms signal of variable intensity to the ipsilateral ear. As the intensity of the 10 ms ipsilateral signal increased, it generated progressively longer periods of persistent inhibition and thus the discharges were suppressed for periods far longer than the 10 ms duration of the ipsilateral signal. With interaural time disparities, ipsilateral signals that led contralateral signals evoked a persistent inhibition that suppressed the responses to the trailing contralateral signals for periods of a least 15 ms. This suggests that an initial binaural sound that favors the ipsilateral ear should suppress the responses to trailing sounds that normally would be excitatory if they were presented alone. We hypothesize a circuit that generates the persistent inhibition and discuss how the results with binaural signals support that hypothesis.  相似文献   

19.
Directional masking in the amphibian auditory periphery was investigated by presenting frogs with a continuous tone from above and a continuous broadband noise from four different horizontal directions. This paradigm mimics the natural situation in which frogs are located in three-dimensional space and interference can and does arise from any direction. Intracellular recordings were made from single auditory-nerve fibers of the anesthetized adult leopard frogs using a dorsal approach. Vector strength (VS) and the mean preferred firing phase (MP) were measured for 94 low-frequency fibers. Thirty-six percent of the fibers demonstrated direction sensitivity of noise masking of VS. Most fibers exhibited a maximum decrease in VS at 90 degrees or 270 degrees noise incident angle and a minimum decrease in VS at 0 degrees or 180 degrees noise incident angle, suggesting higher noise susceptibility to the lateral fields than to the anterior or posterior field. Forty-nine percent of the fibers demonstrated direction sensitivity of noise masking of MP. Maximum shift in MP occurred most often at 90 degrees or 180 degrees noise incident angle, whereas minimum shift in MP occurred most frequently at 0 degrees or 270 degrees noise incident angle, suggesting higher noise susceptibility to the ipsilateral or posterior field than to the contralateral or anterior field. The difference in the directionality patterns of VS and MP suggests different mechanisms underlying noise masking of these two measures of phase locking in the amphibian auditory nerve.  相似文献   

20.
This study was designed to establish the young adult (3 month) Fischer 344 (F344) rat as a model of inferior colliculus (IC) physiology, providing a baseline for analysis of changes in single unit responses as the animals age and for the study of noise induced hearing loss. The response properties of units localized to the central nucleus of the IC (CIC) and those localized to the external cortex of the IC (ECIC) were compared in order to better characterize differences between these two subnuclei in the processing of simple auditory stimuli. In vivo extracellular single unit recordings were made from IC neurons in ketamine/xylazine anesthetized young adult F344 rats. When a unit was electrically isolated, the spontaneous activity level, characteristic frequency (CF) and CF threshold were determined. Rate/intensity functions (RIFs) in response to contralateral CF tones and to contralateral noise bursts were obtained as were tone isointensity functions. The recording site was marked by ejecting horseradish peroxidase (HRP) from an electrode. Locations of recorded units were determined from electrode track marks and HRP marks in serial brain sections. Recordings were made from 320 neurons in the IC; 176 were localized to the CIC and 87 to the ECIC. Thirteen percent of the units in each subdivision were found to be poorly responsive to auditory stimulation (clicks, tones or noise), and spontaneous activity was generally low. Characteristic frequencies representative of the full rat audiogram were found in each subdivision with the mean threshold significantly higher in the ECIC (28.7 dB SPL) than in the CIC (22.3 dB SPL). The mean maximum discharge rate to CF tone bursts was near 24 spikes/s in each subdivision. Dynamic range tended to be higher in the ECIC (28.3 dB) than in the CIC (23.2 dB), reflecting the lower percentage of nonmonotonic units found in the ECIC. Most units responded more robustly with a slower tone presentation rate, displayed lower levels of discharge to noise bursts than to tone bursts, and had differently shaped tone and noise RIFs. Most units were classified as onset responders to CF tone bursts in both subdivisions, with the percentage of onset responders higher in the ECIC (68.9%) than in the CIC (57.8%). First spike latency did not differ significantly between the subdivisions, but tended to be shorter in the CIC. The breadth of the excitatory receptive fields did not differ significantly between subdivisions, although the mean was slightly larger in the ECIC. These results are generally consistent with the results of CIC studies from other species, establishing the F344 rat as a model of CIC physiology. Differences between CIC and ECIC units included a higher percentage of nonmonotonic RIFs and lower percentage of onset temporal response patterns in the CIC than in the ECIC. Some properties which have been previously used as hallmarks for differentiation between CIC and ECIC units, namely broader tuning and longer first spike latencies in the ECIC, did not reach statistical significance in this study. These may reflect species differences and/or the highly variable and largely overlapping sets of responses evident in the large sample size used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号