首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series-coupled (tandem) ensemble of two capillary GC columns using different stationary phases and a pneumatically actuated low-volume valve connecting the column junction point to an atmospheric-pressure vent line is used to adjust the ensemble separation of selected pairs of target compounds. The valve is normally closed, and the pressure at the column junction point assumes the value that would occur in the absence of any other connections. The valve can be opened for brief periods of time, thus producing pulses of atmospheric pressure at the column junction point. If a component pair is separated by the first column but coelutes from the column ensemble, the ensemble separation can be increased if a pulse occurs when one of the components has migrated across the column junction but the second component is still on the first column. All of the mixture components that are on the same column during the time that the valve is open (pulse duration) will be shifted to either larger or smaller retention times, but the pattern of peaks (elution order) for these components from the column ensemble will be relatively unaffected by the pressure pulse. Multiple pulses can be used to enhance the separation of different component pairs, which sequentially reach the column junction point. Performance of the valve-operated system is described. Time-of-flight mass spectrometry with time-array detection is used to examine the effects of pulse duration on the separation achieved for different component pairs.  相似文献   

2.
Whiting J  Sacks R 《Analytical chemistry》2003,75(10):2215-2223
A series-coupled ensemble of a nonpolar dimethyl polysiloxane column and a polar trifluoropropylmethyl polysiloxane column with independent at-column heating is used to obtain pulsed heating of the second column. For mixture component bands that are separated by the first column but coelute from the column ensemble, a temperature pulse is initiated after the first of the two components has crossed the column junction point and is in the second column, while the other component is still in the first column. This accelerates the band for the first component. If the second column cools sufficiently prior to the second component band crossing the junction, the second band experiences less acceleration, and increased separation is observed for the corresponding peaks in the ensemble chromatogram. High-speed at-column heating is obtained by wrapping the fused-silica capillary column with resistance heater wire and sensor wire. Rapid heating for a temperature pulse is obtained with a short-duration linear heating ramp of 1000 degrees C/min. During a pulse, the second-column temperature increases by 20-100 degrees C in a few seconds. Using a cold gas environment, cooling to a quiescent temperature of 30 degrees C can be obtained in approximately 25 s. The effects of temperature pulse initiation time and amplitude on ensemble peak separation and resolution are described. A series of appropriately timed temperature pulses is used to separate three coeluting pairs of components in a 13-component mixture.  相似文献   

3.
A pneumatically actuated valve is used to connect the junction point of a series-coupled column ensemble to a ballast chamber containing carrier gas at the ensemble inlet pressure in order to periodically stop the carrier gas flow in the first column. When the valve is opened, mixture components, which have migrated across the column junction, are accelerated toward a time-of-flight mass spectrometer that is used as an ensemble detector. Mixture components, which are still in the first column, are frozen in position. This allows for the insertion of time windows into the ensemble chromatogram that can aid in the separation of some overlapping component peaks. The capillary column ensemble (0.18-mm i.d. x 0.18-microm film thickness) consists of a 7.0-m length of polar, (trifluoropropyl)methyl polysiloxane column followed by a 7.0-m length of nonpolar dimethyl polysiloxane column. A flame ionization detector located at the column junction point is used to monitor a portion of the effluent from the first column in order to determine the valve timing sequence needed to enhance the separation of component pairs that are separated by the first column but coelute from the column ensemble. When one of the components of a targeted pair has crossed the junction but the other component is still in the first column, the valve is opened, typically for 1-5 s. The stop-flow system is used to enhance the separation of a mixture containing some common essential oil components and a mixture containing some common pesticides.  相似文献   

4.
A tandem ensemble of two 4.5-m-long x 0.25-mm-i.d. capillary columns with the first using a 0.50-microm film of nonpolar dimethyl polysiloxane and the second using a 0.25-microm film of polar trifluoropropylmethyl polysiloxane is operated with atmospheric pressure air as the carrier gas and an outlet pressure of 50.5 kPa established using a small vacuum pump. A thicker stationary-phase film is used in the first column to increase retention for very volatile compounds. This significantly increases the resolution of these compounds. The thicker film in the first (nonpolar) column decreases the polarity of the tandem column ensemble and, thus, changes its selectivity. A low-dead-volume valve, connected between the column junction point and a source of atmospheric pressure air, is used to obtain pulsed modulation of the carrier gas flow through the column ensemble. When the valve is open, the ensemble inlet pressure and the junction-point pressure are nearly the same, and carrier gas flow nearly stops in the first column, and flow in the second column increases. Enhanced resolution of a component pair that is separated by the first column but coelutes from the column ensemble can be obtained if the valve is opened for a few seconds after one of the components has crossed the junction and is in the second column, but the other component is still in the first column. A sequence of appropriately timed pulses is used to obtain enhanced resolution of several pairs of components that coelute from the column ensemble. These methods enabled the complete separation of an 18-component vapor mixture of common solvents in air in 3.5 min.  相似文献   

5.
A series-coupled ensemble of microfabricated GC columns made by dry reactive ion etching of silicon substrates is evaluated for use with pneumatic selectivity enhancement techniques for targeted pairs of volatile organic compounds. Each column is 3.0 m long with a 150 miceom wide by 240 microm deep cross section. Dynamic coating was used to prepare a nonpolar column with a dimethyl polysiloxane stationary phase and a moderately polar column with a trifluoropropylmethyl polysiloxane stationary phase. Each column generates 5000-6000 theoretical plates. The columns are operated in series with the nonpolar column connected to a split inlet, the polar column connected to a flame ionization detector, and a valve connected between the column junction point and the inlet to the first column. When the valve is closed, the effluent from the first column passes directly into the second column. When the valve is open, both ends of the first column are at the inlet pressure, and flow stops in this column while increased flow is obtained in the second column. For analyte pairs that are separated by the first column but coelute from the column ensemble, the valve is opened for a few seconds after the first component of the pair has passed into the second column but the second component is still in the first column. The result is enhanced separation of the pair in the ensemble chromatogram. Relatively thick cross-linked stationary-phase films are used to increase retention for volatile compounds. The combination of air carrier gas and stationary-phase film thickness in the range 1-2 microm requires the use of relatively low average carrier gas velocities (typically less than 10 cm/s) for adequate resolving power of the column ensemble. Selectivity enhancement under isothermal conditions for a 14-component mixture of volatile organic compounds is demonstrated where neither of the columns alone nor the column ensemble without selectivity enhancement could obtain a complete separation.  相似文献   

6.
Grall AJ  Sacks RD 《Analytical chemistry》2000,72(11):2507-2513
A pressure-tunable ensemble of two series-coupled capillary columns operated at subambient outlet pressure is described. The ensemble consists of a 4.5-m length of nonpolar dimethyl polysiloxane column followed by a 7.5-m length of polar trifluoropropylmethyl polysiloxane column. Air at an inlet pressure of 1.0 atm is used as carrier gas, and a vacuum pump is used to pull the carrier gas and injected samples through the column ensemble. Detection is provided by a photoionization detector operated at a pressure of 0.3 psia. Ensemble selectivity is controlled by means of an electronic pressure controller located at the junction point between the columns. The minimum pressure step size is 0.1 psi, and 50 different set-point pressures can be used, each one producing a different pattern of peaks eluting from the column ensemble. Measured ensemble retention factors for a set of target compounds produce straight lines when plotted versus the ratio of the calculated holdup time of the first column in the ensemble to the total ensemble holdup time. A component band trajectory model is used to describe the effects of ensemble junction-point pressure on the elution patterns generated by the ensemble. Ensemble retention times predicted by the model are in good agreement with values obtained from chromatograms. The use of on-the-fly set-point pressure changes during a separation (selectivity programming) is demonstrated and used to improve the quality of the separation of a 19-component test mixture.  相似文献   

7.
Coutant C  Sacks R 《Analytical chemistry》2000,72(21):5450-5458
A computer-driven pressure controller connected to the junction point of a series-coupled ensemble of two capillary GC columns having different stationary-phase selectivity is used to obtain on-the-fly (programmable) changes in ensemble selectivity. Changes in the junction-point pressure result in differential changes in the local carrier gas velocity in the two columns, and this results in changes in the pattern of peaks eluting from the ensemble. When used with relatively fast temperature programming (30 degrees C/min), the pattern of eluting peaks can be very sensitive to the time at which a selectivity (junction-point pressure) change is implemented. These elution pattern changes are described for a set of six PCB congeners that elute with a small range of retention times. The components are considered as a group, and changes in their elution pattern are described for a single junction-point pressure change, which is implemented at various times after sample injection. If the pressure change is implemented after the components have migrated across the junction point, the final pressure has relatively little impact on the ensemble retention pattern. Pressure changes implemented prior to the components reaching the junction can have a large effect and usually result in a pattern of peaks similar to the pattern obtained when the final pressure is used for the entire separation. For pressure changes made when the group of components is near the junction point, the observed peak pattern may be very sensitive to the time of the pressure change. The time at which the junction-point pressure change occurs is varied in 1.0-s intervals. Artifacts such as peak doubling and peak focusing or broadening are observed if a migrating band is crossing the column junction point at the time of the programmed pressure change.  相似文献   

8.
High-speed GC and GC/time-of-flight MS of lemon and lime oil samples   总被引:1,自引:0,他引:1  
The high-speed GC separation and MS characterization of lime oil and lemon oil samples using programmable column selectivity and time-of-flight mass spectrometry is described. The volatile essential oils are separated on a series-coupled (tandem) column ensemble consisting of a polar trifluoropropylmethyl polysiloxane column and a nonpolar 5% phenyl dimethyl polysiloxane column. Both columns are 7 m long. A 50 degrees C/min linear temperature ramp from 50 to 200 degrees C is used, giving an analysis time of approximately 2.5 min. A time-of-flight MS with time array detection and automated peak finding and characterization software was used to identify 50 components in lime oil samples and 25 components in lemon oil samples. Despite numerous cases of extensive peak overlap, spectral deconvolution software was very successful in the characterization of most overlapping peaks. For cases where a more complete chromatographic separation is desirable, the tandem column ensemble is operated in the first-column stop-flow mode to enhance the separation of selected overlapping clusters of peaks. A valve between the junction point of the tandem column ensemble and a source of carrier gas at the GC inlet pressure is opened for 2-5-s intervals to stop the flow of carrier gas in the first column. This is used to increase the separation of target component groups that overlap in the ensemble chromatogram without first-column stop-flow operation. This procedure is used to isolate the peak for limonene, the largest peak in the analytical-ion chromatogram of both the lime and lemon oil samples.  相似文献   

9.
Smith H  Sacks RD 《Analytical chemistry》1998,70(23):4960-4966
High-speed gas chromatograms are obtained by the use of relatively short lengths of capillary column operated at relatively large carrier gas flow rates. This approach is difficult for more complex mixtures because of the reduced peak capacity available with shorter columns. A solution to this problem is the use of tunable column ensembles consisting of the series (tandem) combination of a polar and a nonpolar column. By adjusting the pressure at the junction point between the columns, the selectivity of the ensemble can be adjusted within the limits imposed by the individual columns. For mixtures representing a relatively large boiling point range and containing more than ~20 components, high-speed, isothermal separations are less effective. These limitations are significantly reduced by combining fast temperature programming with selectivity programming. Selectivity programming is obtained by changing the pressure at the column junction point one or more times during the course of an analysis. In the work described here, the column ensemble temperature and the junction pressure are initially set to give a high-quality separation of the earliest eluting components. After these components have eluted, a linear temperature ramp of ~35 °C/min is initiated. As the temperature increases, the pressure is adjusted to change the selectivity and thus facilitate the separation of groups of components as they migrate through the column ensemble. Using this approach, a mixture of 30 purgeable organic compounds is separated in less than 2.5 min.  相似文献   

10.
A pressure-tunable series-coupled ensemble of two capillary GC columns is combined with a time-of-flight MS detector for the high-speed characterization of mixtures containing hydrocarbon compounds. The column ensemble consists of a nonpolar 5% phenyl poly(dimethylsiloxane) column and a very polar poly(ethylene glycol) column. The TOFMS instrument uses time-array detection to obtain up to 500 complete electron mass spectra per second. Instrument software allows for automated peak finding and the spectral deconvolution of severely overlapping unknown chromatographic peaks, if their fragmentation patterns are significantly different and if at least two spectra can be recorded between the peak apexes. By adjusting the carrier-gas pressure at the column-junction point, the separations between adjacent peak pairs can be adjusted to enhance the capabilities of the TOFMS detector. The sensitivity of peak-pair separation to changes in junction-point pressure is studied for combinations of alkanes, olefins, and aromatic compounds. When complete separation is required, the use of pressure-tunable column ensembles cannot always provide sufficient control of peak-pair separation for structurally similar compounds. However, complete chromatographic separation typically is not required with the TOFMS detection, and a pressure-tunable column ensemble is very useful for the high-speed characterization of hydrocarbon mixtures.  相似文献   

11.
A simple approach to two-dimensional liquid chromatography has been developed by coupling columns of different selectivity using a 12-port, dual-position valve and a standard HPLC system. The valve at the junction of the two columns enables continuous, periodic sampling (injection) of the primary column eluent onto the secondary column. The separation in the primary dimension is comparable to conventional HPLC, whereas the secondary column separation is fast, lasting several seconds. The high-speed separation in the secondary dimension enables the primary column eluent to be sampled with fidelity onto the secondary column throughout the chromatographic run. One might expect a coupled column liquid chromatography system operating in reverse-phase mode to be strongly correlated and, hence, inefficient. However, by applying a solvent gradient in the primary dimension and by progressively incrementing the solvent strength in the secondary dimension (tuning), the inefficiency or cross correlation between the two dimensions is minimized. In a tuned two-dimensional system, the influence of primary column retention (usually hydrophobicity) is minimal on secondary column retention. This enables subtle differences in component interaction with the two stationary phases to dominate the secondary column retention. The peaks are randomly dispersed over a retention plane rather than along a diagonal, resulting in an orthogonal separation. The peak capacity is multiplicative, and each component has a unique pair of retention times, enabling positive identification. In addition, the location of the component provides two independent measures of molecular properties. The 2D-LC system was evaluated by analyzing a test mixture made of some aromatic amines and non-amines on different secondary columns (ODS-AQ/ODS monolith, ODS/amino, ODS/cyano). The relative location of sample components in the two-dimensional plane varied significantly with change in secondary column. Among the secondary columns, the amino and cyano columns offered the most complementary separation, with the retention order of several components reversed in the secondary dimension. The theoretical peak capacity of the 2D-LC system was around 450 for a separation lasting 30 min. A 2D-LC system involving amino and cyano columns resulted in a high-speed separation of the test mixture, with most of the chemical components resolved within a few minutes.  相似文献   

12.
Grall AJ  Sacks RD 《Analytical chemistry》1999,71(22):5199-5205
The development of lightweight, portable GC instrumentation is handicapped by the need for compressed carrier gas to drive the separation. The use of air as carrier gas eliminates the need for compressed gas tanks. If a vacuum pump is used to pull carrier gas and injected samples through the column, atmospheric pressure air can be used as carrier gas. Vacuum outlet operation also improves performance for high-speed separations by reducing detector dead time and by shifting optimal carrier gas velocity to higher values. Under vacuum outlet conditions using atmospheric pressure air as carrier gas, a 6-m-long, 0.25-mm-i.d. capillary column can generate approximately 12,500 theoretical plates, and a 12-m-long column can generate approximately 44,000 plates but with a 3-4-fold increase in separation time. The principal issues in column selection for high-speed GC with air as a carrier gas are efficiency and stability. Several bonded and nonbonded stationary phases were evaluated for use with air as carrier gas in the analysis of volatile organic compounds of interest in airmonitoring applications. These include dimethylpolysiloxane, 50% phenyl-50% methyl polysiloxane, 50% cycanopropylphenyl-50% methyl polysiloxane, trifluoropropyl polysiloxane, poly(ethylene glycol), and dicyanoallyl polysiloxane (nonbonded). The dimethyl polysiloxane and the trifluoropropyl polysiloxane columns showed good efficiency and no significant deterioration after 5 days of continuous operation with air as carrier gas. The 50% phenyl-50% methyl polysiloxane and the 50% cycanopropylphenyl-50% methyl polysiloxane columns showed poorer efficiency, and the poly(ethylene glycol) and dicyanoallyl polysiloxane columns showed excessive deterioration in air.  相似文献   

13.
Time-of-flight mass spectrometry is unique in that ion abundance ratios are constant over the chromatographic peak profile provided that the peak contains only one component. This provides the means for the automated finding and spectral deconvolution of overlapping chromatographic peaks from completely unknown mixtures if the mass spectra for the overlapping components are sufficiently unique. This can greatly reduce the chromatographic resolution requirements, which allows for very rapid quantitative analysis as well as for high-speed mixture characterization. High-speed GC with stop-flow operation of a series-coupled column ensemble can be used to completely separate some component pairs that coelute from the column ensemble, thus eliminating the need for spectral deconvolution of those mixture components. This provides two options for high-speed qualitative and quantitative analysis, using either the mass spectra from deconvoluted overlapping peaks or the mass spectra from the completely separated peaks obtained with stop-flow operation of the tandem column ensemble. These options are compared with respect to the similarity for spectral matching with a library and to peak area linearity with concentration, calibration plot correlation coefficients, and shot-to-shot reproducibility.  相似文献   

14.
A model and a spreadsheet algorithm is described for the prediction of solute-band migration trajectories in a series-coupled combination of two capillary GC columns with pressure-tunable and -programmable selectivity and operated under temperature-programmed conditions. The model takes into account the acceleration of carrier gas in the two columns as a result of decompression effects, the deceleration of carrier gas as a result of the increase in viscosity during temperature programming, the decrease in solute retention factors with increasing temperature during the temperature program, the differences in retention factors for the two columns, and programmed changes in the carrier-gas flow rates in the two columns during selectivity programming. In the model, the 20-meter-long column ensemble is divided into 1-cm-long intervals, and the carrier-gas velocity and column temperature are assummed to be constant in any interval. Migration times for all of the mixture solutes are computed for each column interval, and the solute-band positons in the column ensemble are plotted versus the running sum of these migration times to obtain band trajectory plots. The sum of these migration times for all 2,000 intervals gives the ensemble retention times for the solutes. Isothermal retention factors (k) for all of the mixture components at various column temperatures (Tc) are used as imput to the algorithm. Slope and intercept values of In(k) vs 1/Tc plots are used in the algorithm. General features of the model are tested using a mixture of C12-C24 normal alkanes. A mixture of polar and nonpolar compounds is used to test the utility of the model for the predicition of peak separations and retention times with pressure-tunable and -programmable selectivity. Good agreement is observed in all cases.  相似文献   

15.
High-speed GC with time-of-flight (TOF) MS detection is used for the characterization and analysis of oils rendered from the peel of five diverse species of orange including bergemot orange, bitter orange, tangerine, mandarin orange, and sweet orange. With a user-defined signal-to-noise threshold of 100, 44 peaks were found and 36 compounds identified in the various oils. Some major constituent components show large concentration ranges over the five species. A 14-m-long, 0. 18-mm-i.d. column ensemble consisting of 7.0-m lengths of a trifluoropropylmethyl polysiloxane and a 5% phenyl dimethyl polysiloxane column was temperature-programmed at 50 degrees C/min starting at the time of injection to achieve analysis times under 140 s. The TOFMS was operated with a spectral acquisition rate of 25 spectra/s, and automated peak finding software successfully found all of the components, with the exception of one severely overlapping peak pair in bitter-orange oil. Of the 44 peaks, 25 were identified by use of a TOFMS library created for this study; another 11 were identified with a commercial terpene library, and 8 were not identified. A quantitative comparison (percent of total peak area) is presented for 16 components, which comprise 98.8-99.5% of the total peak area for the five orange species. Stop-flow operation of the column ensemble is used to enhance selectivity for targeted component pairs to facilitate single-channel detection for QA/ QC analysis of characterized samples and to enhance column selectivity for TOFMS characterization in cases in which peak overlap is so severe that only a single peak is observed.  相似文献   

16.
Two new and high-purity all-hydrocarbon side-chain liquid crystalline polysiloxane polymers were synthesized by grafting all-hydrocarbon liquid crystal monomers onto a polymethylhydrosiloxane backbone. The two polysiloxane polymers show both smectic B and E mesophases which were characterized by (differential scanning calorimetry and X-ray analysis. As stationary phases, these liquid crystalline polysiloxane polymers were coated on the inner surface of a capillary column (i.d. = 0.32 mm, film thickness d(f) ≈ 0.25 μm) using the static coating method. The capillary column was installed on a GC/MS instrument. We used a standard commercial mixture of 21 species of polynuclear aromatic hydrocarbons (purchased from Supelco Co. and Merck Co.) to test the chromatographic behavior of the coated stationary phase. Test results of the isomeric pair compounds show a better separation resolution than identical tests using the commercial HP-5 capillary column, which is a standard and state-of-the-art analytical tool for the chromatographic resolution of PAHs.  相似文献   

17.
Akard M  Sacks R 《Analytical chemistry》1996,68(9):1474-1479
Analysis time for high-speed, capillary column GC is reduced by the use of a pressure-tunable tandem combination of a nonpolar poly(methylsiloxane) (DB-5) column and a polar trifluoropropyl poly(methylsiloxane) (Rtx-200) column operated isothermally at an optimized oven temperature. By adjusting the pressure at the midpoint between the two columns, the residence times of all sample components are adjusted to give the maximum resolution of the critical component pair. The result is a two-dimensional optimization where the column temperature and the midpoint pressure were adjusted to give the shortest possible analysis time. A previously defined relative resolution function, which requires only empirical capacity factor data for the target compounds, is used as the dependent variable in the optimization algorithm. The resulting three-dimensional resolution map is projected parallel to the relative resolution axis in order to obtain a useful two-dimensional display from which the optimal operating conditions can be determined.  相似文献   

18.
A novel approach to comprehensive two-dimensional gas chromatography (GCxGC) separations is presented, which operates in a new region of the "GCxGC optimization pyramid". The technique relies on the use of short primary columns to decrease elution temperatures (Te) of analytes from the primary column, with a Te reduction of up to 50 degrees C illustrated. This in turn has implications that will expand the areas where GCxGC can be used, as decreased elution temperatures will allow GCxGC to be applied to mixtures of less volatile compounds or permit the use of less thermally stable stationary phases in the column ensemble. As well, it will allow GCxGC to be applied to thermally labile compounds through a reduction in elution temperature. With short primary columns, resolution and efficiency in the first dimension is sacrificed, but speed is gained; however, the second column in GCxGC provides additional resolution and separation of compounds of differing chemical properties. Thus, it is possible to recover some of the analytical separation power of the system to provide resolution of target analytes from sample impurities. As an example, a case study using short primary columns for the separation of natural pyrethrins, which degrade above 200 degrees C, is described. Even with the sacrifices of overall separation power that are made, there is still sufficient resolution available to separate the six natural pyrethrins from each other and the complex chrysanthemum extract matrix. The use of cold-on-column injection, a short primary column, and a high carrier gas flow rate allow the pyrethrins to be eluted below 200 degrees C, with separation in 17 min and complete resolution from sample matrix.  相似文献   

19.
Mao Y  Carr PW 《Analytical chemistry》2000,72(13):2788-2796
Separations of several families of environmental toxicants were optimized by means of the thermally tuned tandem column (T3C) concept. We use a tandem combination of an octadecylsilane (ODS) and a carbon-coated zirconia (C-ZrO2) column; and tune the selectivity by independently adjusting the isothermal temperatures of the two columns. This results in the change in the contribution that each column makes to the overall retention and selectivity. The separation was optimized by locating the optimum pair of column temperatures which give the best separation of the critical solute pair. For both triazine herbicides and carbamate pesticides samples, dramatically different selectivities and different critical pairs were observed for the two types of phases. Although neither individual phase gave adequate separation, the T3C approach provided baseline separations using only four preliminary trial separations. We also showed that, for the triazine samples, the T3C approach gave a better separation than did conventional mobile phase optimization with an ODS column. The combination of superior selectivity of T3C and high flow rate allows the baseline separation of complex mixtures in just a few minutes.  相似文献   

20.
A procedure is described for the preparation of high-performance etched silicon columns for gas chromatography. Rectangular channels, 150 mum wide by 240 mum deep are fabricated in silicon substrates by gas-phase reactive ion etching. A 0.1-0.2-mum-thick film of dimethyl polysiloxane stationary phase is deposited on the channel walls by filling the channel with a dilute solution in 1:1 n-pentane and dichloromethane and pumping away the solvent. A thermally activated cross-linking agent is used for in situ cross-linking. A 3-m-long microfabricated column generated approximately 12 500 theoretical plates at optimal operating conditions using air as carrier gas. A kinetic model for the efficiency of rectangular cross-section columns is used to evaluate column performance. Results indicate an additional source of gas-phase dispersion beyond longitudinal diffusion and nonequilibrium effects, probably resulting from numerous turns in the gas flow path through the channel. The columns are thermally stable to at least 180 degrees C using air carrier gas. Temperature programming is demonstrated for the boiling point range from n-C5 to n-C12. A 3.0-m-long column heated at 10 degrees C/min obtains a peak capacity of over 100 peaks with a resolution of 1.18 and a separation time of approximately 500 s. With a 0.25-m-long column heated at 30 degrees C/min, a peak capacity of 28 peaks is obtained with a separation time of 150 s. Applications are shown for the analysis of air-phase petroleum hydrocarbons and the high-speed analysis of chemical warfare agent and explosive markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号