首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 577 毫秒
1.
介绍了由中国石化集团洛阳石油化工工程公司负责设计的中国石油化工股份有限公司金陵分公司1.5 Mt/a加氢裂化装置的概况、主要技术特点、使用的催化剂及运行情况.装置采用单段两剂全循环工艺,采用的裂化催化剂为新开发的含微量特殊分子筛的具有高中间馏分油选择性的FC-14加氢裂化催化剂,要求加工中东含硫蜡油(VGO)焦化蜡油(CGO)为91的混合油,中间馏分油总质量收率不小于78.5%.对装置中期标定数据进行了分析并与设计数据对比,结果证明:单段两剂多产中间馏分油全循环加氢裂化成套工艺技术和工程设计是成功的;首次用于加氢裂化装置的FC-14催化剂具有空速大、活性高和中间馏分油选择性较高等特点.  相似文献   

2.
FC-34催化剂是为满足国内炼化市场对清洁燃油和优质化工原料的需求而开发的新一代单段多产清洁中间馏分油和高质量尾油(可用作蒸汽裂解制乙烯原料)的加氢裂化催化剂。该催化剂以改性Y型分子筛和纳米无定形硅铝复合材料为主要酸性组分,采用DURM均匀混合技术制备,活性组分可以在催化剂中均匀分散。性能评价结果表明,FC-34加氢裂化催化剂具有裂化活性适宜、加氢性能优良、中间馏分油选择性高,开环能力强等特点,其活性和中间馏分油选择性两者的综合性能达到了FC-14催化剂的水平,尾油BMCI值得到极大改善,可以作为理想的蒸汽裂解制乙烯原料。  相似文献   

3.
以改性Y型分子筛为主要酸性组分,W-Ni为加氢组分,采用浸渍法制备了单段高中油型加氢裂化催化剂(牌号为FC-30),并进行了工业放大试生产。以伊朗VGO为原料,在反应压力为15.7 MPa,体积空速为0.92 h~(-1),氢气/原料油(体积比)为1 200∶1的条件下,于200 m L加氢裂化实验装置中,对该催化剂及同类FC-28催化剂性能进行了对比评价。结果表明:FC-30的反应温度较FC-28低3℃,二者中间馏分油选择性相当;采用该催化剂生产的石脑油芳烃潜含量(体积分数)为62.0%,是优质的重整原料;尾油的芳烃指数为12.9,可以作为蒸汽裂解制乙烯的原料;工业试生产的FC-30性质、反应活性及中间馏分油选择性与实验室结果相当。  相似文献   

4.
单段加氢裂化催化剂的开发及应用   总被引:1,自引:1,他引:0  
主要介绍几种抚顺石油化工研究院(FRIPP)开发的单段高活性中间馏分油型加氢裂化催化剂ZHC-01,ZHC-02,FC-28,FC-14等的特性、反应性能及工业应用情况。ZHC-01与ZHC-02采用共胶法制备,ZHC-02是一种无定型催化剂,该催化剂的异构性能强、柴油馏分收率高。FC-28和FC-14是采用浸渍法制备的分子筛型催化剂,FC-14是最大量生产柴油的催化剂,FC-28是FRIPP最新开发的高活性及高中间馏分油选择性催化剂。  相似文献   

5.
FC-14单段加氢裂化催化剂的工业应用   总被引:1,自引:0,他引:1  
介绍了FC-14单段加氢裂化催化剂在新建1.5Mt/a单段加氢裂化装置的工业应用。分析了开工过程中FC—14催化剂装填、硫化、原料油切换等相关技术问题。根据装置运行初期标定的产品质量、产品收率对催化剂活性、选择性进行分析评价。结果表明,FC—14催化剂初期活性、中问馏分油选择性高,装置产品质量优良。  相似文献   

6.
加氢裂化技术发展的思考   总被引:1,自引:0,他引:1  
介绍了 2 0世纪 90年代国外固定床馏分油加氢裂化技术的三个重要进展 :开发了一批新的催化剂和稠环芳烃分离系统 ,进一步改进了反应器内构件。结合国外情况指出 :①中压加氢裂化将不会像高压加氢裂化那样在工业上得到广泛应用 ,也不会取代高压加氢裂化 ;②今后催化剂的发展方向仍是继续改进和提高沸石催化剂的活性、选择性和稳定性 ;③能力在 1.0Mt/a以下的装置宜采用单段流程 ,1.0Mt/a以上的装置宜采用两段流程 ;④加氢裂化装置生产乙烯装置原料看来是不合适的。  相似文献   

7.
中国石油化工股份有限公司金陵分公司加氢裂化装置采用单段串联部分循环加氢工艺,以直馏蜡油为原料,最大量生产优质中间馏分油。装置上一周期采用FF-26精制剂,级配FC-16B/FC-14组合裂化剂,装置运行31个月后,裂化剂再生。2017年6月,首次应用FF-66精制剂,并级配再生后的裂化剂。通过对装置两周期标定数据的分析,发现本周期R1001精制油、汽提塔底油、石脑油和尾油硫含量均高于上周期,而氮含量低于上周期,说明FF-66加氢脱硫活性稍低于FF-26,加氢脱氮能力比FF-26稍强;本周期干气收率与上周期相同,液体收率稍低于上周期,主要原因是本周期原料较轻,为了提高产品液体收率,降低反应裂解深度,从而导致轻、重石脑油和喷气燃料收率均低于上周期;柴油和尾油收率高于上周期,说明轻油在低裂解温度下,再生剂的中间馏分油选择性严重偏离催化剂最初设计;变压器油倾点和凝点高于上周期,说明再生剂的异构化性能严重降低。  相似文献   

8.
介绍抚顺石油化工研究院为适应加氢裂化装置大型化、产品质量不断升级、加氢裂化装置扩能改造和用户追求高中间馏分油选择性的需要而开发的两段加氢裂化(S-DHC)工艺、单段两剂(多剂)加氢裂化(S-SHC)工艺、加氢裂化-蜡油加氢脱硫组合工艺和中压加氢裂化(改质)-中间馏分油补充加氢精制组合工艺等加氢裂化新工艺.  相似文献   

9.
FC-50中油型加氢裂化催化剂的研制   总被引:1,自引:0,他引:1  
为满足市场对清洁燃料油及化工原料需求量不断增长的要求,中国石油化工股份有限公司抚顺石油化工研究院以无定型硅铝为主载体,改性Y型分子筛为主要酸性组分,W-Ni为活性组分,采用浸渍法制备了FC-50中油型加氢裂化催化剂,属多产中间馏分油兼产高质量重石脑油和尾油的催化剂。在试验装置上对该剂与国内同类先进催化剂进行了对比评价,并进行了工业放大。结果表明,FC-50催化剂具有较高的中间馏分油选择性、反应活性以及良好的稳定性,产品质量优良。以伊朗VGO-1为原料,使用FC-50催化剂,在反应温度380℃、空速1.5h-1条件下,单程转化率为65.8%,中间馏分油选择性79.90%。在相同条件下,FC-50与FC-26催化剂相比,反应温度低3℃,中油选择性比FC-26催化剂高近2%。结果表明,FC-50催化剂的反应性能完全达到了实验室定型催化剂的水平。  相似文献   

10.
以改性Y型分子筛为主要酸性组分、钨镍为加氢组分,采用浸渍法制备了FC-26中间馏分油型选择性加氢裂化催化剂,在实验室装置上进行了该剂与国外较高水平的同类催化剂的对比评价试验,并进行了工业放大试验。评价结果表明.FC-26催化剂具有较高的中间馏分油选择性、反应活性以及良好的稳定性,产品质量优良,达到了国外参比剂的水平。工业放大结果表明,FC-26放大催化剂的反应性能完全达到了实验室定型催化剂的水平。  相似文献   

11.
中国石化金陵分公司加氢裂化装置第六周期采用FF-66加氢精制催化剂及FC-16B/FC-14组合加氢裂化催化剂,装置运行36个月后,产品变压器油氧化安定性降低,倾点较高,尾油黏度指数无法满足润滑油基础油的需求。为了改善产品质量,提高加氢能力,装置第七周期精制剂采用FF-66级配体相催化剂FTX-1,裂化剂采用FC-16B/FC-14级配体相催化剂FTXC-1。标定结果表明,与第六周期相比,第七周期产品重石脑油硫质量分数从4.0μg/g降低至1.3μg/g,喷气燃料烟点从25.4 mm升高至26.8 mm,变压器油倾点从-9℃降低至-12℃。芳烃含量高是变压器油氧化安定性差的主要原因,通过加氢饱和处理,变压器油的芳烃质量分数从约10%降至最低约0.5%,氧化安定性得以改善。但是,第七周期尾油黏度指数为91,未能满足润滑油基础油的要求,可以通过掺炼石蜡基油种的蜡油和提高裂化剂的开环能力来提升尾油黏度指数。  相似文献   

12.
以柴油加氢精制装置多种工况的基本数据为计算基础,考察上流式反应器内液相体积分率的变化规律以及相关操作参数对液相体积分率的影响。结果表明,在上流式反应器内从催化剂床层入口到出口是液相体积分率逐渐增加的过程,操作压力、操作温度和补充氢的组成对反应器内液相体积分率的影响很小,但循环比和注氢方式对其影响较大,液相体积分率随循环比的增加而增加,多点注氢方式可以提高催化剂床层的液相体积分率。反应器出口液相体积分率可以通过数学关联公式预测,以实现连续液相加氢生产的自动控制。  相似文献   

13.
全加氢型润滑油装置通常由加氢处理、加氢脱蜡、补充精制3部分组成。由于加氢脱蜡、补充精制多采用贵金属催化剂,为防止贵金属催化剂中毒,对循环氢及反应进料中的硫、氮含量要求高。因此在流程设置上,多数情况下将加氢脱蜡、补充精制作为一段串联布置在加氢处理单元的下游。常规全加氢型润滑油装置需要两套独立的高压反应系统及相关高压设备,即采用两段技术,流程相对较长,且设备较多。通过在全加氢型润滑油生产装置中引入高压氢气汽提技术,将传统的一段加氢处理和二段加氢脱蜡-补充精制两个反应系统整合为一段串联系统,既能缩短原有的加工流程、减少装置占地,又能节省装置投资8%左右,同时使全装置能耗减少12%左右。  相似文献   

14.
介绍了RN-32V催化剂在福建联合石油化工公司2.3 Mt/a蜡油加氢处理装置的应用情况,该装置的蜡油原料中含脱沥青油及焦化蜡油,具有干点高,沥青质含量、残炭和金属含量高的特点。初期标定结果表明:在反应压力14.04 MPa、床层平均温度384.6 ℃、体积空速1.11 h-1的条件下,使用RN-32V催化剂能够较好地降低进料蜡油硫含量和氮含量,改善催化裂化装置进料的性质。  相似文献   

15.
以柴油加氢精制装置的基本数据为计算基础,通过工艺计算,分析过剩氢、循环比、汽提氢等对采用连续液相加氢技术的柴油加氢精制装置操作的影响。结果表明:少量的气态过剩氢就能建立起较高的氢分压;循环油有助于控制催化剂床层温升;适量的汽提氢能有效稀释反应器内硫化氢的浓度,说明连续液相加氢技术可以实现滴流床技术中循环氢系统的作用,加氢装置今后有可能取消循环氢系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号