首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Regularities of the effect produced by Ce2(SO4)3 salt introduced in an aqueous electrolyte containing Zr(SO4)2 on the plasma-electrolytic formation of oxide coatings on titanium, their composition, and structure are studied. ZrO2 + CeO x + TiO2 three-phase oxide coatings with a thickness about 10 μm are obtained. The coatings involve ZrO2 cubic phase. The ZrO2-to-TiO2 phase ratio in the coatings can be controlled. The zirconium content in the coatings reaches 20 at %, while that of cerium is 3–5 at %. The surface layer (∼3-nm thick) contains Ce3+ (∼30%) and Ce4+ (∼70%). Pores in the surface part of coatings have diameters around or smaller than 1 μm and are regularly arranged. The obtained systems have a certain catalytic activity with respect to the oxidation of CO to CO2 at temperatures above 400–450°C. The coatings are corrosion-resistant in chloride-containing environments. The thickness h of coatings depending on the charge Q supplied to the cell is described by the equation h = h 0(Q/Q 0) n , where n = 0.35 and h 0 is the thickness of the coating formed at Q 0 = 1 C/cm2.  相似文献   

2.
Nanostructured Bi2Se3 and Sn0.5-Bi2Se3 were successfully synthesized by hydrothermal coreduction from SnCl2·H2O and the oxides of Bi and Se. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). Bi2Se3 powders obtained at 180°C and 150°C consist of hexagonal flakes of 50–150 nm in side length and nanorods of 30–100 nm in diameter and more than 1 μm in length. The product obtained at 120°C is composed of thin irregular nanosheets with a size of 100–200 nm and several nanometers in thickness. The major phase of Sn0.5-Bi2Se3 synthesized at 180°C is similar to that of Bi2Se3. Sn0.5-Bi2Se3 powders are primarily nanorod structures, but small amount of powders demonstrate irregular morphologies.  相似文献   

3.
Highly ordered TiO2 nanotubes with 85 μm length were fabricated by the electrochemical method for 17 h at 60 V in an ethylene glycol/0.5 % NH4F/5 % water mixture solution. The nanotube arrangements and surface morphologies of the anodic titania films were clearly dependent on the electrolytes used in the fabrication process. The activation energy for the transformation from an amorphous to anatase structure was evaluated using differential scanning calorimetry (DSC) results and a Kissinger plot. The activation energy for anatase transformation on the anodic titania nanotubular film was estimated to be 208.9 kJ/mol.  相似文献   

4.
The present study describes the dielectric properties of RF sputtered Ta2O5 thin films as a function of the buffer layer and annealing condition. The buffer layers were Ti or TiO2. And the thin film was annealed in various conditions. The X-ray pattern results showed that the phase of the RF sputtered Ta2O5 thin films was amorphous and this state was kept stable to RTA (rapid thermal annealing) even at 700°C. Measurements of the electrical and dielectric properties of the reactive sputtered Ta2O5 fabricated in two simple metal insulator semiconductor (MIS) structures, (Cu/Ta2O5/Ti/Si/Cu and Cu/Ta2O5/TiO2/Si/Cu) indicated that the amorphous Ta2O5 grown on Ti possesses a high dielectric constant (30–70) and high leakage current (10−1–10−4 A/cm2), whereas a relatively low dielectric constant (−10) and low leakage current (−10−10 A/cm2) were observed in the amorphous Ta2O5 deposited on the TiO2 buffer layer. In addition, the leakage current mechanisms of the two amorphous Ta2O5 thin films were investigated by plotting the relation of current density (J) vs. applied electric field (E). The Ta2O5/Ti film exhibited three dominant conduction mechanism regimes contributed by the Ohmic emission at low electrical field, by the Schottky emission at intermediate field and by the Poole-Frenkel emission at high field. In the case of Ta2O5/TiO2 film, the two conduction mechanisms, the Ohmic and Schottky emissions, governed the leakage current density behavior. The conduction mechanisms at various electric fields applied were related to the diffusion of Ta, Ti and O, followed by the creation of vacancies, in the rapid thermal treated capacitors.  相似文献   

5.
Thin TiO2 layers grown at 130°C on SiO2-coated Si substrates by atomic layer deposition (ALD) using TTIP and H2O as precursors were annealed, and the effects of the annealing temperature on the resulting electrical properties of TiO2 and the interface properties between a Pt electrode and TiO2 were examined using transmission line model (TLM) structures. The as-deposited TiO2 thin film had an amorphous structure with OH groups and a high resistivity of 6×103Ω-cm. Vacuum annealing at 700 °C transformed the amorphous film into an anatase structure and reduced its resistivity to 0.04Ω-cm. In addition, the vacuum-annealing of the TiO2/SiO2 structure at 700°C produced free silicon at the TiO2-SiO2 interface as a result of the reaction between the Ti interstitials and SiO2. The SiO2 formed on the TiO2 surface caused a Schottky contact, which was characterized by the TLM method. The use of the TLM method enabled the accurate measurement of the resistivity of the vacuum-annealed TiO2 films and the characterization of the Schottky contacts of the metal electrode to the TiO2.  相似文献   

6.
The kinetics of forward extraction of Ti(IV) from H2SO4 medium by P507 in kerosene has been investigated using the single drop technique.In the low concentration region of Ti(IV),the rate of forward extraction at 298 K can be represented by F(kmol·m-2·s-1)=10-5.07 [TiO 2 + ][H+]-1 [NaHA 2 ](o)·Analysis of the rate expression reveals that the rate determining step is(TiO)(i)2+ +(HA 2)(i)-[TiO(HA2)](i)+.The values of Ea,H±,S±,and G±298 are calculated to be 22 kJ·mol-1,25 kJ·mol-1,-218 J·mol-1·K-1,and 25 kJ·mol-1,respectively.The experimental negative S± values indicate that the reaction step occurs via SN2 mechanism.  相似文献   

7.
It is shown that anodic oxide coatings with a thickness of several to 300 νm can be obtained on titanium by varying the charge spent on (Q). The prevailing phase in the coatings is ZrO2 in monoclinic and tetragonal modifications. The content of zirconium in the layers is up to 20 at %. Distributions of titanium, zirconium, and oxygen in the cross sections of the coatings are obtained, and the effect of Q on the formation and elementary and phase compositions of the coatings is studied. Tentative experiments clarifying the effects of bipolar anodic-cathodic polarization and electrolyte aging on the composition of coatings are carried out. The coatings are shown to be stable at temperature variations in the range of 20–700°C and to decrease the contact corrosion current at the (titanium + coating)—St3 steel interface by a digit of 10–15 in 3% NaCl.  相似文献   

8.
Results of the investigation of the optical properties and of the calculations of the electronic structure of Fe2NiAl and Fe2MnAl alloys are presented. The main attention is paid to the ellipsometric study of the spectral dependence of the real (ɛ1) and imaginary (ɛ2) parts of the dielectric constant in the range of wavelengths λ = 0.3–13 μm. An anomalous behavior of the optical conductivity σ(ω) at IR frequencies has been revealed in Fe2MnAl, which differs substantially from that in Fe2NiAl. The results obtained are discussed based on the calculations of the electronic structure of the alloys.  相似文献   

9.
It has been shown that BiVO4 and Pb2V2O7 react with each other, forming a new compound of the formula Pb2BiV3O11 at molar ratio equal to 1:1. This compound has also been obtained from PbO, Bi2O3, and V2O5, mixed at a molar ratio of 4:1:3. It melts congruently at a temperature of 725 ± 5 °C and crystallizes in the triclinic system with unit-cell parameters: a = 0.710076 nm, b = 1.41975 nm, c = 1.42972 nm, α = 134.552°, β = 97.2875°, γ = 89.6083°, and Z = 4.  相似文献   

10.
Effects of temperature and potential on the electrochemical corrosion behavior of alloy AISI 304 (UNS S30400) Stainless steel were investigated in 3 wt.% cerium nitrate (Ce[NO3]3.6H2O) solution. With an increase in electrolyte temperature from ambient temperature to 90°C, the corrosion potential of the alloy shifted towards the noble direction, and the resistance to polarization increased due to the formation of Ce-oxide on the electrode surface. The oxide films formed at the open circuit potential (OCP) and a passive potential of 0.4 VSCE were examined by x-ray photoelectron spectroscopy (XPS). The oxide film formed at 50°C and a passive potentialof 0.4 VSCE consists of mixed oxides of Ce and Cr, whereas that at OCP consists of only Cr oxide. The formation of Cr oxides on the electrode surface was primarily due to the nitrate (NO3 ) ions in Ce(NO3)3.6H2O electrolyte.  相似文献   

11.
Metal-insulator-semiconductor (MIS) structures containing Ge nanocrystals embedded in both Al2O3 and ZrO2/Al2O3 are fabricated by an ultra-high vacuum electron-beam evaporation method. Secondary ion mass spectroscopy (SIMS) results indicate that Ge embedded in Al2O3 diffuses towards the surface of the Al2O3 layer after annealing at 800°C in N2 ambient for 30 min. Ge embedded in ZrO2/Al2O3 is stable, thus inducing less leakage current. Capacitance voltage studies indicate that annealing can effectively passivate the negatively charged trapping centers. Memory effect of the Ge nanoclusters is verified by hysteresis in the C-V curves in the Al2O3/Ge+Al2O3/Al2O3 and ZrO2/Ge+Al2O3/Al2O3 samples. This article is based on a presentation in “The 7th Korea-China Workshop On Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24–27, 2003.  相似文献   

12.
Phase relations in the ternary oxide system Al2O3-V2O5-MoO3 in the solid state in air have been investigated by using the x-ray diffraction (XRD) and differential thermal analysis/thermogravimetric (DTA/TG) methods. It was confirmed that in the subsolidus area of the Al2O3-V2O5-MoO3 system, there exist seven phases, that is Al2O3, V2O5(s.s.), MoO3, AlVO4, Al2(MoO4)3, AlVMoO7, and V9Mo6O40. Seven fields, in which particular phases coexist at equilibrium, were isolated. The crystal structure of AlVO4 has been refined from x-ray powder diffraction data. Its space group is triclinic, , Z = 6, with a = 0.65323(1) nm, b = 0.77498(2) nm, c = 0.91233(3) nm, α = 96.175(2)°, β = 107.234(3)°, γ = 101.404(3)°, V = 0.42555 nm3. The crystal structure of the compound is isotypic with FeVO4. Infrared (IR) spectra of AlVO4 and FeVO4 are compared.  相似文献   

13.
In this study, the electrochemical behavior of commercial pure titanium with both coarse-grained (annealed sample with the average grain size of about 45 µm) and nano-grained microstructure was compared by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis. Nano-grained Ti, which typically has a grain size of about 90 nm, is successfully made by six-cycle accumulative roll-bonding process at room temperature. Potentiodynamic polarization plots and impedance measurements revealed that as a result of grain refinement, the passive behavior of the nano-grained sample was improved compared to that of annealed pure Ti in H2SO4 solutions. Mott-Schottky analysis indicated that the passive films behaved as n-type semiconductors in H2SO4 solutions and grain refinement did not change the semiconductor type of passive films. Also, Mott-Schottky analysis showed that the donor densities decreased as the grain size of the samples reduced. Finally, all electrochemical tests showed that the electrochemical behavior of the nano-grained sample was improved compared to that of annealed pure Ti, mainly due to the formation of thicker and less defective oxide film.  相似文献   

14.
This paper reports the oxidation behavior of TiAl3/Al composite coating deposited by cold spray. The substrate alloy was orthorhombic-Ti-22Al-26Nb (at.%). The oxidation kinetics of the coating was tested at 650, 800, and 950 °C, respectively. The parabolic rate constant for the coating oxidized at 650 °C was k p = 7.2 × 10−2 mg·cm−2·h−1/2 for the tested 1200 h. For the coating oxidized at 800 °C, the oxidation kinetics could be separated into two stages with k p value of 39.8 × 10−2 mg·cm−2·h−1/2 for the initial 910 h and 17.7 × 10−2 mg·cm−2·h−1/2 for the stage thereafter. For the coating oxidized at 950 °C, the oxidation kinetics can be separated into three stages with k p of 136.9 × 10−2 mg·cm−2·h−1/2 in the first 100 h, followed by 26.9 × 10−2 mg·cm−2·h−1/2 from 100 to 310 h, and 11.8 × 10−2 mg·cm−2·h−1/2 from 310 to 1098 h. XRD, SEM, and EPMA were used to study the microstructure of the coating. The results indicated that the oxidation took place throughout the entire coating instead of only at the surface. The aluminum phase in the composite coating was soon oxidized to Al2O3 in all tested cases. The aluminum in TiAl3 phase was depleted gradually and oxidized to Al2O3 along with the degradation of TiAl3 to TiAl2 and TiAl as the temperature increased and time proceeded. AlTi2N was also a typical oxidation product at temperature higher than 800 °C. The experimental results also indicated that the protection of the coating was attributed greatly to the interlayer formed between the coating and the substrate.  相似文献   

15.
Al2O3/ZrO2/Al2O3 gate stacks were prepared on ultrathin SOI (Silicon on insulator) substrates by ultrahigh vacuum electron beam evaporation and post-annealed in N2 at 450°C for 30 min. Three clear nanolaminate layered structure of Al2O3(2.1 nm)/ZrO2(3.5 nm)/Al2O3(2.3 nm) was observed with a high-resolution cross-sectional transmission electron microscope (HR-XTEM). High frequency capacitance voltage (C-V) characteristics of a fully depleted (FD) SOI MOS capacitor at 1 and 5 MHz were studied. The minority carriers determine the high frequency C-V properties, which is opposite to the case of bulk MOS capacitors. The series resistance of the SOI substrate is found to be the determinant factor of the high frequency characteristics of FD SOI MOS capacitors. This article is based on a presentation in “The 7th Korea-China Workshop on Advanced Materials” organized by the Korea-China Advanced Materials Cooperation Center and the China-Korea Advanced Materials Cooperation Center, held at Ramada Plaza Jeju Hotel, Jeju Island, Korea on August 24≈27, 2003.  相似文献   

16.
Phase constitutions of ZnNb2O6−TiO2 mixture ceramics were significantly changed according to the sintering temperature. Phase transition procedures and their effect on the microwave dielectric properties of 0.42ZnNb2O6−0.58TiO2 were investigated using X-ray powder diffraction and a network analyzer. The fractions of the phases composing the mixture were calculated by measuring integral intensities of each reflection. The structural transitions in 0.42ZnNb2O6−0.58TiO2 were interpreted as the association of two distinct steps: the columbite and rutile to ixiolite transition present at lower temperatures (900–950°C) and the ixiolite to rutile transition at higher temperatures (1150–1300°C). These transitions caused considerable variation of microwave dielectric properties. Importantly, τf was modified to around 0 ppm/°C in two sintering conditions (at 925°C for 2 hr and at 1300°C for 2 hr), by the control of phase constitution.  相似文献   

17.
The electronic structures of spinel MgAl2O4 and MgO tunnel barrier materials were investigated using first-principles density functional theory calculations. Our results show that similar electronic structures are found for the MgAl2O4 and MgO tunneling barriers. The calculated direct energy gaps at the Γ-point are about 5. 10 eV for MgAl2O4 and 4. 81 eV for MgO, respectively. Because of the similar feature in band structures from Γ high-symmetry point to F point (△ band), the coherent tunneling effect might be expected to appear in MgAl2O4-based MTJs like in MgO-based MTJs. The small difference of the surface free energies of Fe (2. 9 J. m-2) and MgAl2O4 (2. 27 J·m-2) on the {100}orientation, and the smaller lattice mismatch between MgAl2O4 and ferromagnetic electrodes than that between MgO and ferromagnetic electrodes, the spinel MgAl2O4 can substitute MgO to fabricate the coherent tunneling and chemically stable magnetic tunnel junction structures, which will be applied in the next generation read heads or spintronic devices.  相似文献   

18.
In this work, a facile route using a simple solvothermal reaction and sequential heat treatment process to prepare porous Y2O3 microcubes is presented. The as-synthesized products were characterized by X-ray powder diffraction (XRD), scanning electronic microscope (SEM), energy dispersive spectrometer (EDS), thermogravimetric analysis (TG), and differential thermal analysis (DTA). The thermal decomposition process of the Y2O3 precursor was investigated. SEM results demonstrated that the as-prepared porous Y2O3 microcubes were with an average width of about 20 μm and thickness of about 8 μm. It was found that the morphology of the Y2O3 precursor could be readily tuned by varying the molar ratio of S2O82− to Y3+. Y2O3:Eu3+ (6.6%) microcubes were also prepared and their photoluminescence properties were investigated.  相似文献   

19.
In this study, the thermoelectric properties of 0.1 wt.% Cdl2-doped n-type Bi2Te2.7Sb0.3 compounds, fabrieated by SPS in a temperature range of 250°C to 350°C, were characterized. The density of the compounds was increased to approximately 100% of the theoretical density by carrying out consolidation at 350°C. The Seebeck coefficient, thermal conductivity, and electrical resistivity were dependent on a hydrogen reduction process and the sintering temperature. The Seebeck coefficient and the electrical resistivity increased with the reduction process. Also, electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that carrier density and mobility vary according to the reduction process and sintering temperature. The highest figure of merit, 1.93×10−3 K−1, was obtained for the compound consolidated at 350°C for 2 min.  相似文献   

20.
We have calculated the electronic structures of Co2FeAl1-xSix(101) surface using first-principles method based on the density functional theory. Because of the surface effect, the minority spin band gap at the Fermi level disappears at the surface of bulk Co2FeAl1-xSix. However, beneath the surface, the minority spin gap opens at the Fermi level, which indicates that the electronic structures of Co2FeAl1-xSix(101) be-come close to that of bulk phase. Accordingly, the Co2FeAl1-xSix(101) surface is a composite tri-layer structure that corresponds to the weakening of half-metallic property in Co2FeAl1-xSix films. Even though, the spin polarization of Co2FeAl1-xSix(101) surface is still larger than that of Co2FeAl or Co2FeSi materials, making Co2FeAl1-xSix a promising spintronics material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号