首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposite materials of compositions 5% NiO – 6% Al2O3– 89% SiO2 and 0.2% CoO – 4.8% NiO – 6% Al2O3– 89% SiO2, respectively, were prepared by a sol–gel process. NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals were grown in a SiO2 amorphous matrix at around 1073 K by heating the dried gels from 333 to 1173 K at the rate of 1 K/min. The formations of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in SiO2 amorphous matrix were confirmed through X-ray powder diffraction, Fourier transform infrared spectroscopy, differential scanning calorimeter, transmission electron microscopy (TEM), and optical absorption spectroscopy techniques. The TEM images revealed the uniform distribution of NiAl2O4 and cobalt-doped NiAl2O4 nanocrystals in the amorphous SiO2 matrix and the size was found to be ∼5–8 nm.  相似文献   

2.
SiO2–TiO2–methylcellulose (MC) composite materials processed by the sol-gel technique were studied for optical waveguide applications. Dense, crack-free and homogeneous films as thick as 2 μm were obtained via the organic binder MC-assisted sol–gel process and single coating with low-temperature treatment. Light waveguiding in such hybrid film was demonstrated at a wavelength of 650 nm. About 1.1 dB/cm or lower propagation loss for the SiO2 (80 mol%)–TiO2 (20 mol%)–MC (22 wt%) film can be achieved. The effects of thermal treatment on the structure and properties of the gel films were also investigated.  相似文献   

3.
Nonagglomerated spherical ZrO2 particles of 5–8 nm size were made by emulsion precipitation. Their crystallization and film-forming characteristics were investigated and compared with nanosized ZrO2 powders obtained by sol–gel precipitation. High-temperature X-ray diffraction indicated that the emulsion-derived particles are amorphous and crystallize at 500°C into tetragonal zirconia, which is stable up to 1000°C. Crystallite growth from 5–20 nm occurred between 500°–900°C. Films of 6–75 nm thickness were made by spreading, spin coating, and controlled deposition techniques and annealed at 500°–600°C. The occurrence of t -ZrO2 in the emulsion-precipitated powder is explained by the low degree of agglomeration and the corresponding low coarsening on heating to 500°–800°C, whereas the agglomerated state of the sol–gel precipitate powder favors the occurrence of the monoclinic form of zirconia under similar conditions.  相似文献   

4.
Silver and gold nanoparticles were synthesized by the sol–gel process in SiO2, TiO2, and ZrO2 thin films. A versatile method, based on the use of coordination chemistry, is presented for stabilizing Ag+ and Au3+ ions in sol–gel systems. Various ligands of the metal ions were tested, and for each system it was possible to find a suitable ligand capable of stabilizing the metal ions and preventing gold precipitation onto the film surface. Thin films were prepared by spin-coating onto glass or fused silica substrates and then heat-treated at various temperatures in air or H2 atmosphere for nucleating the metal nanoparticles. The Ag particle size was about 10 nm after heating the SiO2 film at 600°C and the TiO2 and ZrO2 films at 500°C. After heat treatment at 500°C, the Au particle size was 13 and 17 nm in the TiO2 and ZrO2 films, respectively. The films were characterized by UV–vis optical absorption spectroscopy and X-ray diffraction, for studying the nucleation and the growth of the metal nanoparticles. The results are discussed with regard to the embedding matrix, the temperature, and the atmosphere of the heat treatment, and it is concluded that crystallization of TiO2 and ZrO2 films may hinder the growth of Ag and Au particles.  相似文献   

5.
Rapid formation of active, mesoporous, and crystalline TiO2 photocatalysts via a novel microwave hydrothermal process is presented. Crystalline anatase mesoporous nanopowders 100–300 nm in size with worm hole-like pore sizes of 3–5 nm were prepared by a modified sol–gel of titanium tetra-isopropoxide, accelerated by a microwave hydrothermal process. The organic surfactant, tetradecylamine, which is used as a self-assembly micelle in the sol–gel and microwave hydrothermal process, enables to harvest crystallized mesoporous anatase nanoparticles with a high-surface area. Mesoporous worm hole-like and crystalline powders with surface areas of 243–622 m2/g are obtained. X-ray diffraction, N2-adsorption isotherms (Barrett–Joyner–Halenda and Brunauer–Emmet–Teller method), scanning electron microscope, and transmission electron microscope are used to identify the characteristics and morphologies of the powders. It is shown that crystallization by calcination at 400°C/3 h inevitably reduced the surface area, while the microwave hydrothermal process demonstrated a rapid formation of crystalline mesoporous TiO2 nanopowders with a high-surface area and excellent photocatalytic effects.  相似文献   

6.
Gel-glasses of various compositions in the x ZrO2.(10 – x )SiO2system were fabricated by the sol–gel process. Precipitation due to the different reactivities between tetraethyl orthosilicate (TEOS) and zirconium(IV) n -propoxide has been eliminated through the use of 2-methoxyethanol as a chelating agent. Thermal treatment of these gels produced crystalline ZrO2particles. While monoclinic is the stable crystalline phase of zirconia at low temperatures, the metastable tetragonal phase is usually the first crystalline phase formed on heat treatment. However, stability of the tetragonal phase is low, and it transforms to the monoclinic phase on further heat treatment. In this study, it has been found that the transformation temperature increases as the SiO2content in the ZrO2–SiO2 binary oxide increases. The most significant results were from samples containing only 2 mol% SiO2, where the metastable tetragonal phase formed at low temperatures and remained stable over a broad temperature range. X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to elucidate the structure of these binary oxides as a function of temperature.  相似文献   

7.
Eu2+-doped CaMgSi2O6 phosphor was prepared by depositing mixed hydroxides of Ca, Mg, and Eu over spherical SiO2 particles (300 nm) pre-coated with polycations (polyethyleneimine), followed by calcination at 1200°C in a reducing atmosphere. The prepared phosphor showed intense blue emission, ascribable to the 4f7-4f65d transition of Eu2+. In contrast, the luminescence intensity of the phosphor was considerably decreased when prepared without polycations. It was suggested that negatively charged hydroxides are deposited on positively charged SiO2 surfaces pre-coated with polycations through electrostatic self-assembly interaction. On calcination, the hydroxide shells react with the SiO2 cores to produce Eu2+:CaMgSi2O6.  相似文献   

8.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

9.
Protective magnesia coating on Y2O2S:Eu phosphor powders is formed by a layer-by-layer (LbL) method in aqueous solutions. The phosphor powders are first coated with a negative-charged, anionic polyelectrolyte of ammonium salt of poly(acrylic acid) (PAA-NH4), on which a second-layer, positive-charged magnesium hydroxide coating is then deposited by precipitation and heterocoagulation. A uniform and multiple Mg(OH)2/PAA-NH4 bilayer coating on the phosphor powder is prepared by repeating the above coating processes. Protective magnesia coating on the phosphor powders, which is evidenced by insignificant degradation in optical properties after an extended period of electron bombardment, is formed by calcining.  相似文献   

10.
Magnesium aluminate (MgAl2O4) spinel powders of irregular and spherical morphologies were obtained from the bi-component water-based sols following the sol–gel and sol–emulsion–gel methods, respectively. For the synthesis of the oxide microspheres, the surfactant concentration and viscosity of the sols were found to affect the characteristics of the derived microspheres. The gel and calcined powders were investigated by using thermogravimetry analysis, differential thermal analysis, X-ray diffraction (XRD), optical and scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy, and particle size analysis. XRD results indicated crystallization of the only phase MgAl2O4 spinel from 200° to 1000°C. Formation of hollow microspheres with a single cavity was identified by SEM.  相似文献   

11.
SiO2, Al2O3, and 3Al2O3.2SiO2 powders were synthesized by combustion of SiCl4 or/and AlCl3 using a counterflow diffusion flame. The SiO2 and Al2O3 powders produced under various operation conditions were all amorphous and the particles were in the form of agglomerates of small particles (mostly 20 to 30 nm in diameter). The 3Al2O3.2SiO2 powder produced with a low-temperature flame was also amorphous and had a similar morphology. However, those produced with high-temperature flames had poorly crystallized mullite and spinel structure, and the particles, in addition to agglomerates of small particles (20 to 30 nm in diameter), contained larger, spherical particles 150 to 130 nm in diameter). Laser light scattering and extinction measurements of the particle size and number density distributions in the flame suggested that rapid fusion leading to the formation of the larger, spherical particles occurred in a specific region of the flame.  相似文献   

12.
SiO2 nanowires, made from natural chrysotile, were used to synthesize zinc oxide (ZnO)/SiO2 composites by chemical precipitation. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, and Fourier transform infrared. Their optical properties were studied by a ultraviolet-vis spectrophotometer and a fluorescence spectrophotometer. Structural analysis revealed that the crystal size of ZnO crystallites is <20 nm, and the leached SiO2 nanowires were amorphous. TEM analysis showed that the size of ZnO particles in SZ8 was mainly in the range from 15 to 20 nm and dispersed uniformly on the surface of SiO2 nanowires. The photoluminescence spectra showed that ZnO/SiO2 composites have stronger emitting intensity at the blue–green band than pure ZnO synthesized under the same reaction conditions. Therefore, the composites will be of great interest in the application of luminescence material. The as-prepared ZnO/SiO2 composites can be used as photocatalysts for waste water treatment because they separate much more easily away from solution.  相似文献   

13.
A layer-by-layer method is used to coat silica on the red phosphor powders of Y2O2S:Eu in aqueous solutions. A cationic polymer of polyethylenimine (PEI) is used to form the first-layer coating, and the precipitating sodium silicate solution, to form negatively charged silica film on the PEI-coated phosphor powder as the second-layer coating. Repetition of the above coating process in aqueous solutions, a uniform, multiple silica/PEI bilayer coating on phosphor powder is formed.  相似文献   

14.
An experimental study has been conducted to evaluate the formation of nano α-Al2O3 under various conditions, such as different calcining temperatures and emulsion ratios of aqueous aluminum nitrate solutions and oleic acid with a high-speed stirring mixer. Four batches of the precursor powders were calcined at three different temperatures of 1000°, 1050°, and 1100°C for 2 h and a terminal product of nano α-Al2O3 powders was obtained. The products have been identified by X-ray diffraction (XRD), specific surface area measurement scanning electron microscope, and transmission electron microscope (TEM). The XRD results show that the phase of powders is determined to be α-Al2O3, indicating that the overall process has been effective. The optimum calcination temperature of the precursor powder for crystallization of nano α-Al2O3 was found to be 1000°C for 2 h. The TEM image indicates that the particle grains have a sub-spherical shape with a mean size of 50–100 nm.  相似文献   

15.
Er-doped Al2O3–SiO2 (1/9 in mol ratio of Al2O3/SiO2) thin films were prepared by using a modified sol–gel process. The modified process entails the precipitation and digestion of Er(OH)3, obtained from the reaction between Er ions and NH4OH in solution. Thin films were deposited on Si wafers by using a spin coating technique (3000 rpm) and the coated films were heat treated at different temperatures for 1 h in an oxygen-purged furnace. All the films were structurally characterized by the X-ray diffraction technique using Cu K α radiation. Refractive indices and the morphologies of the films were studied using a spectroscopic phase modulated ellipsometer and atomic force microscopy, respectively. It was observed that the films were crack free and of about 0.4 μm thickness in a single spin coating and both the lifetime and the photoluminescence intensity of Er ions increased with increasing the annealing temperature. The luminescence properties of the Er-doped Al2O3–SiO2 made by a conventional and our modified doping process were compared and discussed from the stand point of peak intensities and lifetimes as a function of annealing temperatures. It is to be noted here that our modified process was found to be more effective in reducing the clustering of Er ions in Al2O3–SiO2 materials as compared to that of the conventional method.  相似文献   

16.
Ytterbium silicate (Yb2SiO5) is a promising environmental barrier coating material for SiC-based ceramic matrix composites. Yb2SiO5 powders were prepared by the sol–gel process using tetraethyl orthosilicate and ytterbium nitrate as starting materials. The Yb2SiO5 gel was characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis–differential scanning calorimetry (TGA–DSC). After calcining the gel at 1200°C for 1 h, Yb2SiO5 powders were obtained, which were examined by X-ray diffraction, FTIR, transmission electron microscope, and scanning electron microscope. The results showed that single-phase Yb2SiO5 powders of 200–300 nm in size were successfully synthesized.  相似文献   

17.
Compacts of TiB2 with densities approaching 100% are difficult to obtain using pressureless sintering. The addition of SiC was very effective in improving the sinterability of TiB2. The oxygen content of the raw TiB2 powder used in this research was 1.5 wt%. X-ray photoelectron spectroscopy showed that the powder surface consisted mainly of TiO2 and B2O3. Using vacuum sintering at 1700°C under 13–0.013 Pa, TiB2 samples containing 2.5 wt% SiC achieved 96% of their theoretical density, and a density of 99% was achieved by HIPing. TEM observations revealed that SiC reacts to form an amorphous phase. TEM-EELS analysis indicated that the amorphous phase includes Si, O, and Ti, and X-ray diffraction showed the reaction to be TiO2+ SiC → SiO2+ TiC. Therefore, the improved sinterability of TiB2 resulted from the SiO2 liquid phase that was formed during sintering when the raw TiB2 powder had 1.5 wt% oxygen.  相似文献   

18.
E-glass fibers were coated with a 15CaO–15BaO–20SiO2–50TiO2 thin film by the sol–gel method. Mechanical and chemical tests were performed on coated and uncoated fibers in cement and cement extract solutions to investigate the interactions between cement and gel-glass film. The results show that the resistance of E-glass fibers to the alkali cement medium is enhanced by the 15CaO–15BaO–20SiO2–50TiO2 coating. The significant roles of TiO2, CaO, and BaO in the protection fibers from the alkaline attack of cement are described. Some evidence is presented that the alkali corrosion of the coated fibers results in the formation of a thick and compact Ti film that suppresses further corrosion reaction.  相似文献   

19.
Metastable tetragonal ZrO2 phase has been observed in ZrO2–SiO2 binary oxides prepared by the sol–gel method. There are many studies concerning the causes of ZrO2 tetragonal stabilization in binary oxides such as Y3O2–ZrO2, MgO–ZrO2, or CaO–ZrO2. In these binary oxides, oxygen vacancies cause changes or defects in the ZrO2 lattice parameters, which are responsible for tetragonal stabilization. Since oxygen vacancies are not expected in ZrO2–SiO2 binary oxides, tetragonal stabilization should just be due to the difficulty of zirconia particles growing in the silica matrix. Furthermore, changes in the tetragonal ZrO2 crystalline lattice parameters of these binary oxides have recently been reported in a previous paper. The changes of the zirconia crystalline lattice parameters must result from the chemical interactions at the silica–zirconia interface (e.g., formation of Si–O–Zr bonds or Si–O groups). In this paper, FT-IR and 29Si NMR spectroscopy have been used to elucidate whether the presence of Si–O–Zr or Si–O is responsible for tetragonal phase stabilization. Moreover, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy have also been used to study the crystalline characteristics of the samples.  相似文献   

20.
Lead-free (K0.5Na0.5)NbO3 (KNN) thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol–gel processing method, and titanium diffusion from the substrates into the KNN films under different thermal treatment conditions were investigated by the secondary ion mass spectroscopy depth profile and X-ray photoelectron spectroscopy surface analysis. Titanium diffusion was evident in all the KNN thin films, which was further aggravated not only by increasing the annealing temperature, but also surprisingly by higher ramping rate attributed to the resulting larger grain boundaries. The pronounced effects of the titanium diffusion and the resulting substitution of Ti4+ for Nb5+ with different valence states on the composition, structure, and electrical properties of the KNN thin films are analyzed and discussed. The results showed that the Ti diffusion from the substrate played a crucial role in affecting the structure and electrical properties of the ferroelectric KNN thin films deposited on Pt/Ti/SiO2/Si substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号