首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
张玉海 《金属制品》2022,48(1):28-31
调整高强度电梯钢丝绳用盘条SWRH82A轧制工艺,研究不同的工艺参数下FeO被氧化成Fe3 O4、Fe2 O3的变化规律和不同氧化铁皮结构对机械去除的影响;将理论研究与生产实践相结合,确定均热温度控制在(1030±5)℃、进精轧温度控制在(910±5)℃、吐丝温度控制在(880±5)℃时为最佳工艺参数,在此工艺条件下得...  相似文献   

2.
传统的钢丝制品企业采用酸洗方式去除盘条表面氧化铁皮存在环境污染问题。对70钢和H82B盘条进行了不同吐丝温度下的表面氧化铁皮检测。结果表明:高碳钢氧化铁皮一般为FeO和Fe3O4 2层结构,氧化铁皮厚度和FeO的比例随温度的升高而增加。通过调整吐丝温度和冷却速度,得到了适合机械剥壳的氧化铁皮厚度和结构,70钢和H82B盘条最佳氧化铁皮厚度分布为10~15μm和10~16μm、氧化铁皮中最佳FeO占比分别为80%~90%和75%~85%,成功开发出适用于机械剥壳的高碳钢盘条。  相似文献   

3.
低碳钢盘条表面氧化铁皮的质量是影响产品拉拔前除鳞效果的主要因素之一,通过采用扫描电镜(SEM)及能谱分析(EDS)等方法对不同的盘条表面氧化铁皮组成成分、相对质量分数及分布特征进行对比分析。结果表明,两种工艺下的低碳钢盘条表面氧化铁皮结构均由FeO、Fe_2O_3和Fe_3O_4组成,但氧化铁皮的厚度和各组成成分的具体质量分数有较大差异。通过分析,明确轧制过程中控制氧化铁皮质量的关键是采用合理的吐丝温度及轧后冷却工艺,使盘条表面氧化铁皮质量满足客户生产的需要。  相似文献   

4.
《金属制品》2014,(3):31-34
通过试验研究不同控冷工艺对高碳钢热轧盘条表面氧化铁皮形成的影响。用光学显微镜观察、测量盘条表面氧化铁皮的厚度,结果表明,盘条表面氧化铁皮厚度除与吐丝温度有关外,还与盘条轧后冷却速度有关。氧化铁皮厚度随着吐丝温度的升高而逐渐增加;随着盘条轧后冷却速度的变慢,盘条表面氧化铁皮厚度有增加的趋势。当轧后冷却速度不大于13℃/s时,盘条表面氧化铁皮厚度达到15μm左右,氧化铁皮相对较厚且脆,可方便用户在机械剥壳过程中去除。  相似文献   

5.
张宏亮 《金属制品》2021,47(2):38-40
为了降低盘条氧化铁皮厚度,采用降低吐丝温度、提高风冷线冷却强度等工艺措施后,盘条氧化铁皮中的w(O)∶w(Fe)从1∶2降低至1∶1,FeO层占比由40%提高至70%,最终氧化铁皮厚度减少约6 μm,改善了客户的机械剥壳效果.  相似文献   

6.
生产过程中发现成品盘条表面经常出现红色浮锈。对导致盘条表面浮锈生成的水质及控冷等环节进行了测定分析及工艺试验研究。结果表明 ,冷却水质的优劣对高线盘条的质量有一定的影响 ,尤其是对表面质量影响较大。冷却水质差是导致盘条表面浮锈出现的主要原因。必须采用净化水质处理措施。加絮凝剂聚丙烯胺降低水中悬浮物含量 ,保证水质达标 ,从根本上解决盘条表面浮锈问题。在轧制过程中采取提高吐丝温度的方法 ,当吐丝温度高于 950℃时可减少或避免由于水质不好对盘条表面浮锈形成的影响天钢高线厂研究盘条表面浮锈形成原因及消除方法…  相似文献   

7.
分析免退火20CrMnMo盘条磷化成膜质量差原因,盘条氧化铁皮较薄不利于机械剥壳去除,残留的氧化铁皮和表层全脱碳组织影响磷化过程盘条表面pH值和金属离子浓度,不利于形成均匀的磷化膜。生产过程中进行坯料角部修磨,适当降低加热温度至1 060~1 080℃,严格控制加热炉内残氧量不大于2%,消除盘条表层全脱碳组织。通过提高终轧温度至850℃、吐丝温度至840℃后,使氧化铁皮厚度由6~10μm提高至14~20μm,氧化铁皮剥离性能改善明显。工艺优化后盘条磷化膜均匀致密,成品表面色差和粗糙度超标问题得到解决。  相似文献   

8.
分析ER70S-6盘条表面氧化铁皮除不净的原因:表面残留有Fe_2SiO_4,表面氧化铁皮FeO比例低,Fe_3O_4易成粉末,附着在盘条表面,不易剥落。提出控制措施:进保温罩的温度760℃以下,在保温罩里的冷速在0.95~1.05℃/s,出罩温度560℃以下,入集卷筒温度460℃以下,采取措施后,彻底解决了除鳞不净的问题,满足了用户需求。  相似文献   

9.
杨桂瑜 《金属制品》2013,39(5):12-14
SWRH82B盘条酸洗后表面产生的黑膜导致润滑失效,钢丝直径频繁超差。从盘条表面氧化铁皮和酸洗工艺2方面进行分析,给出原因及解决措施:(1)盘条氧化铁皮组织异常。把吐丝温度降低到900℃,保证相变终了时的冷却速度,避免盘条在570℃以上停留,可以消除盘条氧化铁皮缺陷。(2)采用正交试验法优化酸洗工艺:H2SO4质量浓度90120 g/L,FeSO4质量浓度不高于140 g/L,温度40120 g/L,FeSO4质量浓度不高于140 g/L,温度4050℃,时间2550℃,时间2535 min。采用以上措施,酸洗后盘条表面黑膜明显减轻,磷化润滑质量提高,模具消耗下降。  相似文献   

10.
分析C82DA胎圈钢丝用盘条表面产生红锈的原因。提出控制措施:炼钢过程中硅质量分数控制在0.10%~0.15%;连铸坯轧制前彻底除鳞;冷却水中杂质和油含量一定要低,而且要做到每天检查一次水质;冷却喷嘴间隙由8 mm改为6 mm;清扫喷嘴反向空气压力由原来的1.9 MPa提高到2.1 MPa,彻底清除盘条表面的水和附着物;吐丝温度控制在(900±10)℃。改进措施后生产的盘条表面红锈彻底消除,改善了盘条表面质量,满足了用户需求。  相似文献   

11.
埋弧焊丝用H08SG盘条的生产实践   总被引:1,自引:1,他引:0  
陈涛  易敏  陈延清  孙齐松  唐国志  李宏 《金属制品》2011,37(6):52-55,66
介绍首钢埋弧焊丝用H08SG盘条的生产工艺。给出生产过程控制的关键:(1)控制转炉终点w(P)≤0.007%和出钢温度不大于1 680℃,以保证成品低的磷含量;(2)使用预处理铁水(w(S)≤0.005%)和LF精炼双工艺脱硫,保证成品低的硫含量;(3)通过精炼和连铸过程对钢水的保护解决水口堵塞问题,进而控制卷渣带来的表面质量缺陷;(4)轧制过程控制钢坯开轧温度1 000~1 050℃,精轧温度900~950℃,吐丝温度840~880℃。采用此工艺生产的6.5 mm H08SG盘条化学成分稳定,钢质洁净度高,抗拉强度为650~740 MPa,金相组织为贝氏体,成品尺寸精度可控制在±0.15 mm,满足埋弧焊丝用盘条的技术要求。  相似文献   

12.
马志军 《金属制品》2014,40(6):44-47
针对国内某钢厂开发的ER50-6焊丝钢盘条拉拔细丝时断裂的问题,以及焊丝焊接时产生焊接飞溅和熔融电流大的现象,查找炼钢、轧制过程引起此类问题的原因并提出改进措施:调整冶炼成分以及精炼时间,使w(P)≤0.015%,w(S)≤0.006%,w(O)≤20×10-6,w(N)≤30×10-6;降低夹杂物级别和气体含量,夹杂物最大级别1.5级;使用与ER50-6成分较为适用的保护渣;调整连铸坯拉速与二冷段配水;轧制时对可能造成红钢划伤的区域加装导轮等措施进行防护;降低轧制温度(850~880℃)和吐丝温度(750~780℃),同时控制风冷线的冷速≤1.0℃/s,集卷温度控制在500~550℃。改进工艺后生产的盘条,拉拔断丝率、焊接电流等指标达到用户要求。  相似文献   

13.
ER50-6热轧盘条质量控制与轧制工艺研究   总被引:2,自引:2,他引:0  
范银平 《金属制品》2010,36(5):59-61
为了使ER50-6焊接用盘条不经退火拉拔至Φ0.8 mm成品,且在拉拔中模具损耗正常,对ER50-6焊接盘条的质量进行分析,要求盘条表面无明显缺陷如折叠、耳子、结疤等,金相组织应为铁素体和少量珠光体,铁素体体积分数应在80%以上,抗拉强度在560 MPa以下。针对影响拉拔质量的有关因素,对轧制工艺进行控制,开轧温度在955~970℃,终轧(减定径)温度在860~900℃,吐丝温度在800~820℃,轧后冷却速度为0.55~0.85℃/s;轧制过程中严控各道次料型尺寸,使轧槽、导卫等处于良好的工作状态,保证轧后盘条组织状态和表面质量及尺寸精度,使用时,细丝拉拔速度可达15 m/s,成品焊接后熔敷金属抗拉强度可达530 MPa。  相似文献   

14.
为了满足低合金焊丝钢盘条免退火生产要求,结合盘条CCT曲线和生产线的特点,采用2种试验方案轧制AH70G低合金焊丝钢盘条。方案1吐丝温度810~830℃,入罩温度730~750℃;方案2吐丝温度890~910℃,入罩温度800~820℃,2种方案辊道速度均为0.15 m/s,风机、保温罩全关。轧制后,方案1盘条抗拉强度约800 MPa,方案2抗拉强度约700 MPa。对2种方案产生不同的抗拉强度和金相组织进行分析,结果表明,采用方案2生产的盘条金相组织以铁素体和珠光体为主,盘条抗拉强度控制在700~720 MPa,满足用户使用要求。  相似文献   

15.
武文遥 《金属制品》2012,38(4):55-57
为了克服ER70S-6盘条强度高造成的拉拔困难,对比分析不同厂家生产的ER70S-6盘条钢的化学成分、金相组织和力学性能,指出盘条强度高的主要原因是珠光体含量高与晶粒度低。得出结论:(1)在成分不变的情况下,晶粒度与珠光体含量是影响抗拉强度的主要因素;(2)提高吐丝温度,在风冷线辊道速度不变的情况下,可降低盘条强度,但吐丝温度不能超过900℃。通过调整生产工艺,盘条的抗拉强度大于550 MPa的比例从原来的33%降到12%,工艺调整有效。  相似文献   

16.
65钢丝拉拔断裂分析与盘条生产工艺改进   总被引:3,自引:3,他引:0  
从盘条生产方面分析65钢丝拉拔断裂的原因:盘条存在表面脱碳、裂纹、中心缩孔等缺陷,钢中非金属夹杂物级别较高,盘条金相组织控制不好,存在不利于拉拔的网状铁素体。提出防止拉拔断裂的盘条生产工艺措施:优化精炼造渣工艺,电磁搅拌电流300~400A,频率4Hz,二冷配水比水量1.7L/kg,保持连铸过程拉速在1.8~2.4m/min,全程保护浇铸,开轧温度1000~1050℃,吐丝温度840~870℃,优化控冷工艺等。措施实施后盘条金相组织中未发现网状铁素体,索氏体化比例提高,盘条表面未发现脱碳、裂纹,拉拔断丝明显减少,65钢盘条实物质量稳定提高。  相似文献   

17.
焊接用H08Mn2SiA线材的生产   总被引:1,自引:1,他引:0  
H08Mn2SiA焊丝在焊接时具有电弧稳定、熔敷效率高、飞溅较少、焊缝成形美观等优点,用量越来越大。研究H08Mn2SiA线材冶炼、连铸、轧制等生产过程,冶炼时把碳的质量分数控制在0.08%以下,锰的质量分数控制在1.8%~1.9%,防止锰含量过高造成中心偏析,不使用含铝的脱氧剂以避免脆性夹杂,采用电磁搅拌;轧制时采用800℃的吐丝温度,0.95℃/s的相变速度,能生产出不经退火处理而拉拔12道次的线材。  相似文献   

18.
黎孝根 《金属制品》2013,39(1):37-41
针对X82B盘条在使用过程中出现的脆断现象,对断裂样品形貌、金相组织、力学性能等进行分析检测,得出断裂原因:(1)X82B盘条放线脆断大都为局部缺陷所致。(2)擦伤、刮伤等表面缺陷和心部马氏体、表面网状渗碳体等不良组织会导致盘条发生脆断。(3)连铸过程的拉速不稳或润滑不良都会造成盘条的局部裂纹并导致脆断。(4)盘条轧制后期的吐丝、辊道运输、集卷、打捆等环节也易造成盘条的局部裂纹并导致脆断。在盘条生产和后续加工过程中,严格过程控制可有效降低盘条发生脆断的几率。  相似文献   

19.
SWRH82B盘条质量引起的断裂问题分析   总被引:3,自引:3,他引:0  
分析SWRH82B盘条在钢绞线生产中出现断裂的原因,指出盘条未经拉拔出现脆断的主要原因:碳含量比标准偏高,冬季生产时吐丝温度偏高、控冷速度偏大及有害气体较难溢出,使盘条强度高、韧性低。拉拔过程的笔尖状断裂主要由非金属夹杂、中心碳偏析及心部马氏体造成;菊花形断裂是由盘条表面硬度偏高造成;表面机械损伤也能在拉拔过程中造成断裂。根据不同的断口情况,提出解决断裂问题的措施和建议,尤其在盘条生产过程中要严格控制化学成分、轧制温度及冷却速度,防止出现碳偏析和马氏体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号