首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the problem of estimating signal parameters using an array of sensors. This problem is of interest in a variety of applications, such as radar and sonar source localization. A vast number of estimation techniques have been proposed in the literature during the past two decades. Most of these can deliver consistent estimates only if the covariance matrix of the background noise is known. In many applications, the aforementioned assumption is unrealistic. Recently, a number of contributions have addressed the problem of signal parameter estimation in unknown noise environments based on various assumptions on the noise. Herein, a different approach is taken. We assume instead that the signals are partially known. The received signals are modeled as linear combinations of certain known basis functions. The exact maximum likelihood (ML) estimator for the problem at hand is derived, as well as computationally more attractive approximation. The Cramer-Rao lower bound (CRB) on the estimation error variance is also derived and found to coincide with the CRB, assuming an arbitrary deterministic model and known noise covariance  相似文献   

2.
In this paper, we derive the maximum-likelihood (ML) location estimator for wideband sources in the near field of the sensor array. The ML estimator is optimized in a single step, as opposed to other estimators that are optimized separately in relative time-delay and source location estimations. For the multisource case, we propose and demonstrate an efficient alternating projection procedure based on sequential iterative search on single-source parameters. The proposed algorithm is shown to yield superior performance over other suboptimal techniques, including the wideband MUSIC and the two-step least-squares methods, and is efficient with respect to the derived Cramer-Rao bound (CRB). From the CRB analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. In some applications, the locations of some sensors may be unknown and must be estimated. The proposed method is extended to estimate the range from a source to an unknown sensor location. After a number of source-location frames, the location of the uncalibrated sensor can be determined based on a least-squares unknown sensor location estimator  相似文献   

3.
We treat the problem of evaluating the performance of linear estimators for estimating a deterministic parameter vector x in a linear regression model, with the mean-squared error (MSE) as the performance measure. Since the MSE depends on the unknown vector x, a direct comparison between estimators is a difficult problem. Here, we consider a framework for examining the MSE of different linear estimation approaches based on the concepts of admissible and dominating estimators. We develop a general procedure for determining whether or not a linear estimator is MSE admissible, and for constructing an estimator strictly dominating a given inadmissible method so that its MSE is smaller for all x. In particular, we show that both problems can be addressed in a unified manner for arbitrary constraint sets on x by considering a certain convex optimization problem. We then demonstrate the details of our method for the case in which x is constrained to an ellipsoidal set and for unrestricted choices of x. As a by-product of our results, we derive a closed-form solution for the minimax MSE estimator on an ellipsoid, which is valid for arbitrary model parameters, as long as the signal-to-noise-ratio exceeds a certain threshold.  相似文献   

4.
This paper presents a large sample decoupled maximum likelihood (DEML) angle estimator for uncorrelated narrowband plane waves with known waveforms and unknown amplitudes arriving at a sensor array in the presence of unknown and arbitrary spatially colored noise. The DEML estimator decouples the multidimensional problem of the exact ML estimator to a set of 1-D problems and, hence, is computationally efficient. We shall derive the asymptotic statistical performance of the DEML estimator and compare the performance with its Cramer-Rao bound (CRB), i.e., the best possible performance for the class of asymptotically unbiased estimators. We will show that the DEML estimator is asymptotically statistically efficient for uncorrelated signals with known waveforms. We will also show that for moderately correlated signals with known waveforms, the DEML estimator is no longer a large sample maximum likelihood (ML) estimator, but the DEML estimator may still be used for angle estimation, and the performance degradation relative to the CRB is small. We shall show that the DEML estimator can also be used to estimate the arrival angles of desired signals with known waveforms in the presence of interfering or jamming signals by modeling the interfering or jamming signals as random processes with an unknown spatial covariance matrix. Finally, several numerical examples showing the performance of the DEML estimator are presented in this paper  相似文献   

5.
We consider the problem of estimating an unknown deterministic parameter vector in a linear model with a random model matrix, with known second-order statistics. We first seek the linear estimator that minimizes the worst-case mean-squared error (MSE) across all parameter vectors whose (possibly weighted) norm is bounded above. We show that the minimax MSE estimator can be found by solving a semidefinite programming problem and develop necessary and sufficient optimality conditions on the minimax MSE estimator. Using these conditions, we derive closed-form expressions for the minimax MSE estimator in some special cases. We then demonstrate, through examples, that the minimax MSE estimator can improve the performance over both a Baysian approach and a least-squares method. We then consider the case in which the norm of the parameter vector is also bounded below. Since the minimax MSE approach cannot account for a nonzero lower bound, we consider, in this case, a minimax regret method in which we seek the estimator that minimizes the worst-case difference between the MSE attainable using a linear estimator that does not know the parameter vector, and the optimal MSE attained using a linear estimator that knows the parameter vector. For analytical tractability, we restrict our attention to the scalar case and develop a closed-form expression for the minimax regret estimator.  相似文献   

6.
We address the problem of estimating an unknown parameter vector x in a linear model y=Cx+v subject to the a priori information that the true parameter vector x belongs to a known convex polytope X. The proposed estimator has the parametrized structure of the maximum a posteriori probability (MAP) estimator with prior Gaussian distribution, whose mean and covariance parameters are suitably designed via a linear matrix inequality approach so as to guarantee, for any xisinX, an improvement of the mean-squared error (MSE) matrix over the least-squares (LS) estimator. It is shown that this approach outperforms existing "superefficient" estimators for constrained parameters based on different parametrized structures and/or shapes of the parameter membership region X  相似文献   

7.
Robust mean-squared error estimation in the presence of model uncertainties   总被引:1,自引:0,他引:1  
We consider the problem of estimating an unknown parameter vector x in a linear model that may be subject to uncertainties, where the vector x is known to satisfy a weighted norm constraint. We first assume that the model is known exactly and seek the linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible values of x. We show that for an arbitrary choice of weighting, the optimal minimax MSE estimator can be formulated as a solution to a semidefinite programming problem (SDP), which can be solved very efficiently. We then develop a closed form expression for the minimax MSE estimator for a broad class of weighting matrices and show that it coincides with the shrunken estimator of Mayer and Willke, with a specific choice of shrinkage factor that explicitly takes the prior information into account. Next, we consider the case in which the model matrix is subject to uncertainties and seek the robust linear estimator that minimizes the worst-case MSE across all possible values of x and all possible values of the model matrix. As we show, the robust minimax MSE estimator can also be formulated as a solution to an SDP. Finally, we demonstrate through several examples that the minimax MSE estimator can significantly increase the performance over the conventional least-squares estimator, and when the model matrix is subject to uncertainties, the robust minimax MSE estimator can lead to a considerable improvement in performance over the minimax MSE estimator.  相似文献   

8.
In continuation to an earlier work, we further consider the problem of robust estimation of a random vector (or signal), with an uncertain covariance matrix, that is observed through a known linear transformation and corrupted by additive noise with a known covariance matrix. While, in the earlier work, we developed and proposed a competitive minimax approach of minimizing the worst-case mean-squared error (MSE) difference regret criterion, here, we study, in the same spirit, the minimum worst-case MSE ratio regret criterion, namely, the worst-case ratio (rather than difference) between the MSE attainable using a linear estimator, ignorant of the exact signal covariance, and the minimum MSE (MMSE) attainable by optimum linear estimation with a known signal covariance. We present the optimal linear estimator, under this criterion, in two ways: The first is as a solution to a certain semidefinite programming (SDP) problem, and the second is as an expression that is of closed form up to a single parameter whose value can be found by a simple line search procedure. We then show that the linear minimax ratio regret estimator can also be interpreted as the MMSE estimator that minimizes the MSE for a certain choice of signal covariance that depends on the uncertainty region. We demonstrate that in applications, the proposed minimax MSE ratio regret approach may outperform the well-known minimax MSE approach, the minimax MSE difference regret approach, and the "plug-in" approach, where in the latter, one uses the MMSE estimator with an estimated covariance matrix replacing the true unknown covariance.  相似文献   

9.
We consider the problem of estimating, in the presence of model uncertainties, a random vector x that is observed through a linear transformation H and corrupted by additive noise. We first assume that both the covariance matrix of x and the transformation H are not completely specified and develop the linear estimator that minimizes the worst-case mean-squared error (MSE) across all possible covariance matrices and transformations H in the region of uncertainty. Although the minimax approach has enjoyed widespread use in the design of robust methods, we show that its performance is often unsatisfactory. To improve the performance over the minimax MSE estimator, we develop a competitive minimax approach for the case where H is known but the covariance of x is subject to uncertainties and seek the linear estimator that minimizes the worst-case regret, namely, the worst-case difference between the MSE attainable using a linear estimator, ignorant of the signal covariance, and the optimal MSE attained using a linear estimator that knows the signal covariance. The linear minimax regret estimator is shown to be equal to a minimum MSE (MMSE) estimator corresponding to a certain choice of signal covariance that depends explicitly on the uncertainty region. We demonstrate, through examples, that the minimax regret approach can improve the performance over both the minimax MSE approach and a "plug in" approach, in which the estimator is chosen to be equal to the MMSE estimator with an estimated covariance matrix replacing the true unknown covariance. We then show that although the optimal minimax regret estimator in the case in which the signal and noise are jointly Gaussian is nonlinear, we often do not lose much by restricting attention to linear estimators.  相似文献   

10.
We consider the linear regression problem of estimating an unknown, deterministic parameter vector based on measurements corrupted by colored Gaussian noise. We present and analyze blind minimax estimators (BMEs), which consist of a bounded parameter set minimax estimator, whose parameter set is itself estimated from measurements. Thus, our approach does not require any prior assumption or knowledge, and the proposed estimator can be applied to any linear regression problem. We demonstrate analytically that the BMEs strictly dominate the least-squares (LS) estimator, i.e., they achieve lower mean-squared error (MSE) for any value of the parameter vector. Both Stein's estimator and its positive-part correction can be derived within the blind minimax framework. Furthermore, our approach can be readily extended to a wider class of estimation problems than Stein's estimator, which is defined only for white noise and nontransformed measurements. We show through simulations that the BMEs generally outperform previous extensions of Stein's technique.  相似文献   

11.
We propose a new hybrid wireless geolocation scheme that requires only one observation quantity, namely, the received signal. The attenuation model is explored herein to capture the propagation features from the received signal. Thus, it provides a more accurate approach for wireless geolocation. To investigate geolocation accuracy, we consider the time-of-arrival (ToA) estimation in the presence of path attenuation. The maximum-correlation (MC) estimator is revisited, and the exact maximum-likelihood (ML) estimator is derived to estimate the ToA. The error performance of the ToA estimates is derived using a Taylor expansion. It is shown that the ML estimate is unbiased and has a smaller error variance than the MC estimate. Numerical results illustrate that, for a low effective bandwidth, the ML estimator well outperforms the MC estimator. Afterward, we derive the CramÉr–Rao bound (CRB) for the mobile position estimation. The obtained result, which is applicable to any value of path loss exponents, gives a generalized form of the CRB for the ordinary geolocation approach. In seven hexagonal cells, numerical examples show that the accuracy of the mobile position estimation exploring the path loss is improved compared with that obtained by the usual geolocation.   相似文献   

12.
In this paper, a minimax mean-squared error (MSE) estimator is developed for estimating an unknown deterministic parameter vector in a linear model, subject to noise covariance uncertainties. The estimator is designed to minimize the worst-case MSE across all norm-bounded parameter vectors, and all noise covariance matrices, in a given region of uncertainty. The minimax estimator is shown to have the same form as the estimator that minimizes the worst-case MSE over all norm-bounded vectors for a least-favorable choice of the noise covariance matrix. An example demonstrating the performance advantage of the minimax MSE approach over the least-squares and weighted least-squares methods is presented.  相似文献   

13.
王鼎  尹洁昕  刘瑞瑞  张博龙 《电子学报》2018,46(6):1281-1288
同步时钟偏差会显著增加时差(TDOA)定位误差,该文针对这一问题进行了理论性能分析,并提出了改进方法.首先,分析了时钟偏差存在下参数估计方差的克拉美罗界(CRB),给出了关于目标位置估计方差更为闭式的CRB表达式,随后基于最大似然(ML)估计准则和泰勒级数(TS)定位方法,定量推导了时钟偏差对于TDOA定位精度的影响.接着,提出了可抑制时钟偏差的降维TS定位方法,并且给出了时钟偏差的ML闭式解.最后,数值实验验证了文中理论分析的有效性,并且新方法可以有效抑制同步时钟偏差的影响.  相似文献   

14.
In this paper, we study the problem where the aim is to estimate the source (complex amplitude) parameter of a single signal contaminated by a structured interference (constituted by the other signals) and by a background Gaussian noise. To solve this problem, we propose an estimator based on a partially estimated oblique projection. We derive closed-form expressions of the variance of this estimator and of the Cramér–Rao bound (CRB) associated with the considered model. In particular, we show that the proposed estimator is (i) asymptotically (for large number of sensors) efficient in the sense that its variance meets the CRB for a single signal in noise and (ii) for a small of moderate number of sensors, the variance remains close to the CRB without structured interference for well separated bearings.  相似文献   

15.
We address the problem of maximum likelihood (ML) direction-of-arrival (DOA) estimation in unknown spatially correlated noise fields using sparse sensor arrays composed of multiple widely separated subarrays. In such arrays, intersubarray spacings are substantially larger than the signal wavelength, and therefore, sensor noises can be assumed to be uncorrelated between different subarrays. This leads to a block-diagonal structure of the noise covariance matrix which enables a substantial reduction of the number of nuisance noise parameters and ensures the identifiability of the underlying DOA estimation problem. A new deterministic ML DOA estimator is derived for this class of sparse sensor arrays. The proposed approach concentrates the ML estimation problem with respect to all nuisance parameters. In contrast to the analytic concentration used in conventional ML techniques, the implementation of the proposed estimator is based on an iterative procedure, which includes a stepwise concentration of the log-likelihood (LL) function. The proposed algorithm is shown to have a straightforward extension to the case of uncalibrated arrays with unknown sensor gains and phases. It is free of any further structural constraints or parametric model restrictions that are usually imposed on the noise covariance matrix and received signals in most existing ML-based approaches to DOA estimation in spatially correlated noise.  相似文献   

16.
In this paper, we study the properties of the hybrid CramÉr-Rao bound (HCRB). We first address the problem of estimating unknown deterministic parameters in the presence of nuisance random parameters. We specify a necessary and sufficient condition under which the HCRB of the nonrandom parameters is equal to the CramÉr-Rao bound (CRB). In this case, the HCRB is asymptotically tight [in high signal-to-noise ratio (SNR) or in large sample scenarios], and, therefore, useful. This condition can be evaluated even when the CRB cannot be evaluated analytically. If this condition is not satisfied, we show that the HCRB on the nonrandom parameters is always looser than the CRB. We then address the problem in which the random parameters are not nuisance. In this case, both random and nonrandom parameters need to be estimated. We provide a necessary and sufficient condition for the HCRB to be tight. Furthermore, we show that if the HCRB is tight, it is obtained by the maximum likelihood/maximum a posteriori probability (ML/MAP) estimator, which is shown to be an unbiased estimator which estimates both random and nonrandom parameters simultaneously optimally (in the minimum mean-square-error sense).   相似文献   

17.
Direction estimation in partially unknown noise fields   总被引:5,自引:0,他引:5  
The problem of direction of arrival estimation in the presence of colored noise with unknown covariance is considered. The unknown noise covariance is assumed to obey a linear parametric model. Using this model, the maximum likelihood directions parameter estimate is derived, and a large sample approximation is formed. It is shown that a priori information on the source signal correlation structure is easily incorporated into this approximate ML (AML) estimator. Furthermore, a closed form expression of the Cramer-Rao bound on the direction parameter is provided. A perturbation analysis with respect to a small error in the assumed noise model is carried out, and an expression of the asymptotic bias due to the model mismatch is given. Computer simulations and an application of the proposed technique to a full-scale passive sonar experiment is provided to illustrate the results  相似文献   

18.
基于STFAP的MIMO雷达运动目标参数估计的CRB研究   总被引:1,自引:1,他引:0  
多发多收(Multiple-Input Multiple-Output, MIMO)雷达在目标检测、参数估计等方面具有显著优势。目标参数估值的CRB被证明是系统设计和空时自适应处理(STAP)性能分析中的有力工具。该文针对采用频分正交信号的共置天线MIMO雷达,首先建立基于MIMO雷达的目标和杂波空-时-频信号模型;在此基础上,研究基于空-时-频自适应处理(STFAP)的MIMO雷达地面运动目标角度和多普勒参数最大似然估值的克拉美-罗界(CRB);最后通过CRB性能仿真分析验证了MIMO雷达STFAP有效消除动目标检测盲速,提高目标参数估计精度的优势。  相似文献   

19.
Robust estimation of a random vector in a linear model in the presence of model uncertainties has been studied in several recent works. While previous methods considered the case in which the uncertainty is in the signal covariance, and possibly the model matrix, but the noise covariance is assumed to be completely specified, here we extend the results to the case where the noise statistics may also be subjected to uncertainties. We propose several different approaches to robust estimation, which differ in their assumptions on the given statistics. In the first method, we assume that the model matrix and both the signal and the noise covariance matrices are uncertain, and develop a minimax mean-squared error (MSE) estimator that minimizes the worst case MSE in the region of uncertainty. The second strategy assumes that the model matrix is given and tries to uniformly approach the performance of the linear minimum MSE estimator that knows the signal and noise covariances by minimizing a worst case regret measure. The regret is defined as the difference or ratio between the MSE attainable using a linear estimator, ignorant of the signal and noise covariances, and the minimum MSE possible when the statistics are known. As we show, earlier solutions follow directly from our more general results. However, the approach taken here in developing the robust estimators is considerably simpler than previous methods  相似文献   

20.
Compound-Gaussian models are used in radar signal processing to describe heavy-tailed clutter distributions. The important problems in compound-Gaussian clutter modeling are choosing the texture distribution, and estimating its parameters. Many texture distributions have been studied, and their parameters are typically estimated using statistically suboptimal approaches. We develop maximum likelihood (ML) methods for jointly estimating the target and clutter parameters in compound-Gaussian clutter using radar array measurements. In particular, we estimate i) the complex target amplitudes, ii) a spatial and temporal covariance matrix of the speckle component, and iii) texture distribution parameters. Parameter-expanded expectation–maximization (PX-EM) algorithms are developed to compute the ML estimates of the unknown parameters. We also derived the CramÉr–Rao bounds (CRBs) and related bounds for these parameters. We first derive general CRB expressions under an arbitrary texture model then simplify them for specific texture distributions. We consider the widely used gamma texture model, and propose an inverse-gamma texture model, leading to a complex multivariate$t$clutter distribution and closed-form expressions of the CRB. We study the performance of the proposed methods via numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号