首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the conventional contact 1.3-/spl mu/m GaInNAs-GaAs vertical-cavity surface-emitting lasers (VCSELs) was optimized and low threshold current 1.3-/spl mu/m GaInNAs VCSELs grown by metal-organic vapor-phase epitaxy were reported. The idea is to optimize the active region, the doping profiles, and the pairs of p-distributed Bragg reflectors, and the detuning between the emission wavelength and the photoluminescence gain peak wavelength. The continuous-wave 1.0-mA threshold current was achieved for the single-mode VCSEL. For the multiple-mode VCSELs, the below 2-mA threshold currents at 5/spl deg/C-85/spl deg/C , the 1.13-mA threshold current at 55/spl deg/C, and 1.52-mA threshold current at 85/spl deg/C are the best results for 1.3-/spl mu/m GaInNAs VCSELs.  相似文献   

2.
3.
Low-threshold GaInNAs single-quantum-well (SQW) lasers with emission wavelength over 1.3 mum are demonstrated. Epitaxial layers of the lasers are grown using an aluminium-free gas-source molecular-beam epitaxy (GS-MBE) to prevent any impurity or contamination related to aluminium that might be incorporated into the GaInNAs active layer. The fabricated laser is believed it exhibit the lowest threshold-current density (200 A/cm2) among GaInNAs-SQW lasers grown by MBE. Moreover, record low threshold current (5.2 mA) and long-wavelength (1.31 mum) emission were achieved in a ridge-waveguide laser at 25degC under continuous-wave operation  相似文献   

4.
We demonstrate efficient error-free 3.125-Gb/s modulation of InP-based 1.3-/spl mu/m vertical-cavity surface-emitting lasers with AsSb-based distributed Bragg reflectors up to 60/spl deg/C. These devices demonstrated high differential efficiencies [>60% at room temperature (RT)], which resulted in a required bias current for modulation of only 5.9 mA. The measured extinction ratios were greater than 8 dB up to 60/spl deg/C with a peak-to-peak drive voltage of only 800 mV. The 3-dB-down RT small-signal bandwidth was 4.4 GHz at a bias of 5.9 mA.  相似文献   

5.
High-quality 1.3 /spl mu/m GaInNAs/GaNAs single quantum well lasers grown by molecular beam epitaxy are reported. The broad area lasers show a record low threshold current density of 318 A/cm/sup 2/ for a cavity length of 1 mm, a transparent current density of 84 A/cm/sup 2/, and a characteristic temperature of 103 K from 8 to 70/spl deg/C.  相似文献   

6.
We present a comparison between two kinds of single-frequency Sb-based semiconductor VCSELs operating at 2.3 /spl mu/m in continuous-wave regime at room temperature. These lasers are studied in view of application to spectroscopy or trace gas detection. Both are based on a molecular beam epitaxy grown half-VCSEL. In the first configuration, a dielectric mirror is deposited on top to form a microcavity, while in the second a concave mirror is used to form an external cavity. The external cavity VCSEL exhibits 5-mW output power, a narrow linewidth (<<20 kHz), and 50-GHz continuous frequency tunability.  相似文献   

7.
InAlGaAs/InP-based all-monolithic 1.3 /spl mu/m VCSELs operating continuous wave up to 18/spl deg/C are demonstrated. The whole structure is grown by a single step of MOCVD. Selective wet etching of an InP layer is used to form an air-gap aperture for the current confinement. The threshold current of an 8 /spl mu/m device at 15/spl deg/C is /spl sim/2.8 mA.  相似文献   

8.
We report, for the first time, InP-based all-epitaxially grown 1.3-/spl mu/m vertical-cavity surface-emitting lasers with lattice-matched Sb-based distributed Bragg reflectors and AlInAs etched apertures. The minimum threshold current and voltage under pulsed operation were 3 mA and 2.0 V, respectively. The thermal impedance was as low as 1.2 K/mW without heat sinking. Implementation of the AlInAs etched aperture was quite effective in improving the injection efficiency and reducing the internal loss, resulting in improved differential efficiency.  相似文献   

9.
All-epitaxial InP-based 1.3 /spl mu/m VCSELs with a record-high continuous-wave differential quantum efficiency (57%) for single active region long-wavelength devices are demonstrated. Low-loss optical mode confinement is achieved through a selectively etched undercut tunnel-junction aperture. Singlemode continuous-wave lasing was observed up to 87/spl deg/C and the room-temperature output power was 1.1 mW at a current of 4.1 mA and a wavelength of 1.305 /spl mu/m.  相似文献   

10.
11.
We report ridge-waveguide superluminescent diodes based on five stacks of self-assembled InAs-GaAs quantum dots. Devices with output powers up to 10 mW emitting around 1.3 /spl mu/m are demonstrated. Spectral analysis shows a broad emission peak (26-nm full-width at half-maximum) from the dot ground state at low injection, and an additional peak from the excited state at higher bias. Temperature characteristics in the range 10/spl deg/C-80/spl deg/C are also reported. The experimental curves are in good agreement with simulations performed using a traveling-wave rate equation model.  相似文献   

12.
Long-term reliability of 2.5 and 10 Gbit/s 1.3 /spl mu/m AlGaInAs lasers has been demonstrated. Analysis of accelerated life test predicts median life of /spl ges/1.57/spl times/10/sup 6/ h (180 years) at 85/spl deg/C.  相似文献   

13.
A record resonance frequency of 28 GHz and an intrinsic laser 3 dB bandwidth of 34 GHz is reported for a directly modulated injection-locked 1.55 /spl mu/m VCSEL. The small-signal modulation response is experimentally investigated using polarisation-maintaining components.  相似文献   

14.
Continuous-wave (CW) operation of GaInNAs laser diodes in the 1.4 /spl mu/m range has been realised for the first time. A GaInNAs double quantum well separate confinement heterostructure was grown by solid source molecular beam epitaxy. Threshold currents as low as 66 mA and external efficiencies as high as 0.29 W/A could be demonstrated in CW operation. Lasing was observed up to 150/spl deg/C and a characteristic temperature T/sub 0/ of 111K was demonstrated. The emission wavelength at room temperature was centred at 1417 nm.  相似文献   

15.
Gollub  D. Moses  S. Forchel  A. 《Electronics letters》2004,40(19):1181-1182
A report is presented on continuous-wave (CW) singlemode operation of a distributed feedback GaInAsN laser diode at 1295 nm. A sidemode supression ratio of 43 dB is obtained at 60 mA drive current. Small signal modulation bandwidth measurements show a record 3 dB cutoff frequency of 13.8 GHz.  相似文献   

16.
The use of multiple quantum wells and GaAs barriers favours the temperature stability and modulation bandwidth of GaInNAs lasers. It is shown that a very low threshold current density and a high characteristic temperature can be achieved for GaInNAs/GaAs double quantum well lasers, emitting at 1.28 /spl mu/m, when grown by molecular beam epitaxy under favourable conditions.  相似文献   

17.
Spectral linewidth measurements of 1.55 /spl mu/m InGaAlAs/InP vertical-cavity surface-emitting lasers (VCSELs) employing a buried tunnel junction are reported. A narrow linewidth around 28 MHz was obtained at a power level of 0.5 mW using the self-heterodyne method, and an estimation for the linewidth enhancement factor is given.  相似文献   

18.
In this letter, the authors demonstrate a wavelength flexible platform for the production of long-wavelength vertical-cavity surface-emitting lasers which provide full wavelength coverage from 1.3-1.6 /spl mu/m. All-epitaxial InP-based devices with AsSb-based distributed Bragg reflectors were achieved through a common design, process, and growth technology at both the important telecommunications wavelengths of 1.3 and 1.5 /spl mu/m. Thin selectively etched tunnel junctions were implemented as low-loss apertures and offer scalability to small device dimensions. Devices showed low threshold currents (<2 mA), near single-mode (SMSR>20 dB) operation, and high differential efficiency (>40% at 1.3 /spl mu/m and >25% at 1.5 /spl mu/m).  相似文献   

19.
High-speed directly modulated diode lasers are important for optical communications and optical interconnects. In this work, we demonstrate greatly enhanced resonance frequency for vertical-cavity surface-emitting lasers, from 7 to 50 GHz, under ultrahigh injection-locking conditions. In addition, a 20-dB gain is achieved for small signal modulation below resonance frequency.  相似文献   

20.
An InGaAs-InAlAs multiple-quantum-well (MQW) electroabsorption (EA) waveguide modulator fabricated on a GaAs substrate has been designed and characterized at 1.3-/spl mu/m wavelength for microwave signal transmission on an analog fibre-optic link. The modulator structure with a lattice constant 2.5% larger than that of GaAs is grown upon a 0.7-/spl mu/m-thick three-stage compositionally step-graded In/sub z/Al/sub 1-z/As relaxed buffer. The waveguide modulator exhibits a high-electrooptic slope efficiency of 0.56 V/sup -1/, a 3-dB electrical bandwidth of 20 GHz, and a large optical saturation intensity in excess of 17 mW. These high-speed optoelectronic modulators could potentially be integrated with on-chip GaAs electronic driver circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号