首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against GCr15 steel and electroless Ni-P alloy coating under the lubrication of seawater was investigated and compared with that under dry sliding and lubrication of pure water and 3.5 wt.% NaCl solution, respectively. It was found that under the lubrication of aqueous medium, the friction and wear behavior of UHMWPE mainly depended on the corrosion of counterface and the lubricating effect of the medium. Because of serious corrosion of counterface by the medium, the wear rates of UHMWPE sliding against GCr15 under the lubrication of seawater and NaCl solution were much larger than that under other conditions, and such a kind of wear closely related to the corrosion of counterface can be reckoned as indirect corrosive wear. However, when sliding against corrosion-resistant Ni–P alloy under the lubrication of seawater, the lowest coefficient of friction and wear rate of UHMWPE were obtained, owing to superior lubricating effect of seawater. Moreover, periodic ripple patterns were observed on the worn surfaces of UHMWPE sliding against GCr15 under the lubrication of seawater and NaCl solution, which were ascribed to the intelligent reconstruction of surface microstructure of UHMWPE upon large plowing effect of the counterface asperities. Based on scanning electron microscopic (SEM) and three-dimensional (3D) profile analyses of the worn surfaces of UHMWPE, a stick–slip dynamic mechanism was proposed to illustrate the pattern abrasion of UHMWPE. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The tribological behaviors of ultra-high molecular weight polyethylene (UHMWPE) microparticle-modified high-strength glass fabric/phenolic laminate composites sliding against stainless steel under water lubrication have been investigated. Results showed that the incorporation of UHMWPE microparticles, especially at the mass fraction of 5.0 %, improved the wear resistance of the laminate composite to a significant extent, because UHMWPE microparticle can effectively absorb and dissipate the friction energy through a plastic deformation during the formation of the regular ripple-like abrasion patterns on its worn surface. During the sliding process, after the phenolic resin was firstly worn off, UHMWPE microparticles with much better wear resistance were protruded from the worn surface of the laminate composite, leading to a fundamental change in the contact status of the matched surfaces from rigid resin and fibers/steel to flexible UHMWPE/steel. As a result, low and steady friction coefficient was obtained due to good adaptability of UHMWPE to water lubrication.  相似文献   

3.
This is a comparative study between ultra-high molecular weight polyethylene (UHMWPE) reinforced with micro-zinc oxide (ZnO) and nano-ZnO under different filler loads. These composites were subjected to dry sliding wear test under abrasive conditions. The micro- and nano-ZnO/UHMWPE composites were prepared by using a hot compression mould. The wear and friction behaviours were monitored using a pin-on-disc (POD) test rig. The pin-shaped samples were slid against 400 grit SiC abrasive papers, which were pasted, on the stainless steel disc under dry sliding conditions. The worn surfaces and transfer film formed were observed under the scanning electron microscope (SEM). Experimental results showed that UHMWPE reinforced with micro- and nano-ZnO would improve the wear behaviour. The average coefficient of friction (COF) for both micro- and nano-ZnO/UHMWPE composites were comparable to pure UHMWPE. The weight loss due to wear for nano-ZnO/UHMWPE composites are lower compared to micro-ZnO/UHMWPE and pure UHMWPE. The optimum filler loading of nano-ZnO/UHMWPE composites is found to be at 10 wt%. The worn surface of ZnO/UHMWPE composites shows the wear mechanisms of abrasive and adhesive wear. Upon reinforcement with micro- and nano-ZnO, the abrasive and adhesive wear of worn surfaces transited from rough to smooth.  相似文献   

4.
The friction and wear behaviors of polytetrafluoroethylene (PTFE), ultra-high molecular weight polyethylene (UHMWPE), and polyimide (PI) have been comparatively evaluated under dry sliding, blowing air, and simulated sand-dust conditions. The tribological tests were conducted on an improved block-on-ring test rig equipped with an attachment for simulating the sand-dust environment. The reason for the difference in the tribological behavior of these polymers under the three test conditions was also comparatively discussed, based on scanning electron microscopic examination of the worn polymer specimens and counterfaces. Under blowing air conditions, the decrease of the contact temperature produced by blowing air led to the increase in the shearing strength of the sliding surface when compared with dry sliding conditions and hence to cause an increase in the friction coefficient and a remarkable decrease in the wear rate of PTFE and UHMWPE. On the contrary, blowing air produced a decrease in the friction coefficient of PI because of the formation of transfer film on the counterfaces, and an increase in the wear rate, because the blowing air considerably promoted the transfer of PI onto the counterfaces when compared with dry sliding conditions. Both PTFE and UHMWPE registered the lowest wear rate under sand-dust conditions, owing to the tribolayer formation on the worn surfaces, while PI exhibited the highest wear rate because no tribolayer was formed during the abrasive wear process.  相似文献   

5.
《Wear》2007,262(7-8):943-948
To improve the wear resistance of ultrahigh molecular weight polyethylene (UHMWPE), blends of UHMWPE, and an aromatic thermosetting copolyester (ATSP) (50/50, v/v) were developed, taking advantage of the crosslinked structure and good wear resistance of ATSP. As a compatibilizer, poly(ethylene-co-acrylic acid) (PEA) was added into the blends with its contents changing from 0 to 20% (w/w). Dynamometer wear tests (sliding against stainless steel surface with contact pressure ranging from 600 to 2500 kPa) showed that the UHMWPE/ATSP blend with 10% PEA had lower wear rate than the UHMWPE sample. The improved wear resistance resulted from the change of the wear mechanism. Scanning electron microscopy (SEM) images of the worn surfaces revealed that the presence of ATSP and PEA would prevent the lamellar alignment in the UHMWPE phase and adding PEA effectively enhanced the interaction between UHMWPE and ATSP.  相似文献   

6.
Abstract

The current work evaluates the wear and frictional performance of ultrahigh molecular weight polyethylene (UHMWPE) and high density polyethylene (HDPE) sliding against different metal counterfaces, stainless steel(SS), mild steel (MS) and aluminium (Al), under dry contact condition. The experiments were conducted using pin on disc machine at different sliding distances (0–40·32 km), 15 N applied load and 2·8 m s–1 sliding velocity. Interface temperatures and frictional forces were measured simultaneously during the sliding, while specific wear rates were determined for every 1·68 km sliding distance. Based on the optical microscopy of the worn surface and wear track, frictional and wear results were analysed and discussed. The experimental results showed that the type of counterface material significantly influences both frictional and wear performances of the selected polymers. This was mainly due to the film transfer characteristics. Higher temperature and friction coefficient for UHMWPE and HDPE were evident when sliding took place against Al counterface. Sliding the polymers against stainless steel showed low friction coefficients compared to other counterfaces.  相似文献   

7.
Dangsheng  Shirong Ge 《Wear》2001,250(1-12):242-245
Friction and wear behavior of ultra-high molecular weight polyethylene (UHMWPE) sliding against Al2O3 ceramic under dry sliding, and lubrication of fresh plasma, distilled water and physiological saline were investigated with a self-made pin-on-disk apparatus at 37±1°C. The worn surfaces were examined with a scanning electron microscope (SEM). The results show that the friction behavior of UHMWPE is very sensitive to its water absorption state. The wear rate of UHMWPE under dry sliding is the highest and under plasma lubrication is the lowest. The wear mechanisms are different under dry friction and various lubricating conditions.  相似文献   

8.
This study examined the wear characteristics of ultra-high molecular weight polyethylene (UHMWPE) reinforced with talc particles. Analysis of variance (ANOVA) was used to construct empirical models to show the connection between control factors (filler loading, load and sliding speed) and responses (wear rate and average coefficient of friction (COF)) of UHMWPE. Response Surface Methodology (RSM) was employed to project the optimization of the control variables in order to reduce the wear of UHMWPE. It was discovered that the rate of wear and the average COF of UHMWPE could be minimized by the inclusion of talc. The SEM analyses of the worn surfaces and transfer films indicated that the degree of wear on the surface of the UHMWPE was reduced.  相似文献   

9.
The effect of compatibilization on the reciprocating frictional behavior of a polyamide 66 (PA66)/ultra-high molecular weight polyethylene (UHMWPE) blend was investigated. The influence of the amount of added maleic anhydride–grafted polyethylene (MAH-g-HDPE) on the phase morphology, compatibility, and viscoelasticity was explored using scanning electric microscopy (SEM), dynamic mechanical analysis (DMA), and capillary rheometry. In addition, the effect of MAH-g-HDPE on the reciprocating friction and wear performance of the PA66/UHMWPE blend was tested. The worn surface, transfer film, and wear debris were analyzed using SEM, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results showed that the maleic anhydride groups in the MAH-g-HDPE improved the compatibility of PA66 and UHMWPE, and the addition of MAH-g-HDPE enhanced the interface bonding strength and lowered the polar difference between PA and UHMWPE. Therefore, the improved compatibility enhanced the wear resistance of the blend. During reciprocating sliding, UHMWPE transferred to the counterface prior to PA66 for the incompatible blend. The addition of MAH-g-HDPE promoted the adhesion and transfer of PA66 to the counterface.  相似文献   

10.
基于UHMWPE/纳米ZnO复合材料的滑动摩擦磨损机制   总被引:1,自引:0,他引:1  
用热压成型法制备了超高分子量聚乙烯(UHMWPE)纳/米ZnO复合材料,采用销盘式摩擦磨损试验机考察了载荷和相对滑动线速度对复合材料摩擦学性能的影响;采用扫描电子显微镜观察了复合材料磨损表面形貌。结果表明:在低载荷试验条件下磨损机制为粘着磨损,在高载荷试验条件下磨损机制为粘着磨损和疲劳磨损。而在一定载荷试验条件下,无论相对滑动线速度高或低,复合材料的磨损机制主要表现为粘着磨损,只是在高速情况下粘着磨损程度加大,局部还出现了表面撕裂的痕迹。  相似文献   

11.
《Wear》2006,260(1-2):109-115
Dry-sliding and lubricated friction and wear behaviours of polyamide (PA) and ultra-high molecular weight polyethylene (UHMWPE) blend were studied using a pin-on-disc method (polymer pin sliding against a stainless steel disc) at room environment. The tribological performance of PA and UHMWPE were also investigated for the purpose of comparison. The worn surfaces were examined using a scanning electron microscope (SEM) and optical microscope. It was observed that PA specimen demonstrated highest friction coefficient, UHMWPE the lowest in both dry-sliding and lubricated sliding test. The friction of PA could be sufficiently decreased by blending with UHMWPE. Statistical analysis suggested the relationship between the wear volume loss and the sliding distance could be expressed by a linear model for dry-sliding, while a logarithmic model was determined for lubricated sliding. The difference in wear modes between both sliding series suggested that there was change in the mode of material removal process. The lower wear rate in lubricated sliding was attributed to the elastohydrodynamic or partial elastohydrodynamic lubrication through the development of a continuous lubricant film between the polymer and the counterface, while the high wear rate of the specimens, in dry-sliding test, was mainly caused by fatigue process due to the repeated action of tearing and crack-propagation.  相似文献   

12.
Jos Rendn  Mikael Olsson 《Wear》2009,267(11):2055-2061
The aim of the present study is to evaluate the abrasive wear resistance of some potential abrasion resistant steels exposed to different types of abrasive wear contact conditions typical of mining and transportation applications. The steels investigated, include a ferritic stainless steel, a medium alloyed ferritic carbon steel and a medium alloyed martensitic carbon steel.The abrasive wear resistance of the steels was evaluated using two different laboratory test methods, i.e. pin-on-disc testing and paddle wear testing that expose the materials to sliding abrasion and impact abrasion, respectively. All tests were performed under dry conditions in air at room temperature. In order to evaluate the tribological response of the different steels post-test characterization of the worn surfaces were performed using optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. Besides, characterization of the wear induced sub-surface microstructure was performed using optical microscopy.The results show that depending on the abrasive conditions a combination of high hardness and toughness (fracture strain) is of importance in order to obtain a high wear resistance. In the pin-on-disc test (i.e. in sliding abrasion) these properties seem to be controlled by the as-rolled microstructure of the steels although a thin triboinduced sub-surface layer (5–10 μm in thickness) may influence the results. In contrast, in the paddle wear test (i.e. in impact abrasion), resulting in higher forces acting perpendicular to the surface by impacting stones, these properties are definitely controlled by the properties of the active sub-surface layer which also contains small imbedded stone fragments.  相似文献   

13.
In this study, the tribological behavior of ultra-high-molecular-weight polyethylene (UHMWPE) against a GCr 15 steel ball during fretting wear conditions was investigated using an oscillating reciprocating tribometer. The aim of this study was to characterize the critical value of normal load and stroke corresponding to this transition in UHMWPE worn surface at room temperature. Results showed that there existed a critical value of load or stroke at fixed condition. The friction coefficient and wear volume loss of UHMWPE at or near the critical values of load and stroke exhibited extreme changes. Based on observation of the worn surface by scanning electron microscopy (SEM) and 3D surface profiler measurements, it can be found that damage to the worn surface can be linked to the contact load and stroke. In addition, results showed that during the process of fretting wear under different load or stroke conditions, the gross slip regime dominated throughout the whole test period.  相似文献   

14.
This article aims to study the friction and wear behavior of Ti3Al2.5V alloy sliding against EN-31 steel under dry condition using a multi-tribotester. The effect of variation in load and sliding velocity on wear rate, average coefficient of friction, and contact temperature has been studied and analysis of wear debris has been carried out. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were employed to study the morphology of the wear tracks and deduce microchemical information at the elemental level of worn samples, respectively. Results reveal that the wear rate of Ti-3Al-2.5V increases with increasing sliding velocity and increasing normal load with few exceptions. The average coefficient of friction decreases as the normal load increases with exceptions at some loads. SEM micrographs of worn samples obtained at different loads and sliding velocities show the formation of wear tracks on the surface due to ploughing and flaking of the matrix. The main mechanism responsible for wear of Ti3Al2.5V alloy sample is rupture of the matrix and abrasion. Wear debris analysis shows irregular-shaped wear particles with very sharp edges that appeared to be plastically deformed at high sliding velocity, whereas the wear debris is very loose and fine at lowest sliding velocity.  相似文献   

15.
K. J. Wahl  D. N. Dunn  I. L. Singer 《Wear》1999,230(2):365-183
Amorphous Pb–Mo–S coatings 200 to 510 nm thick were deposited by dual ion-beam deposition (IBD) onto steel and Si substrates. Coating wear studies were performed using ball-on-flat reciprocating sliding with steel ball counterfaces in dry air. Tests were run between 1 and 100,000 sliding cycles, and wear depths measured by interference microscopy. Morphology and chemistry of the as-deposited coatings and worn surfaces were investigated with optical microscopy, micro-Raman spectroscopy and cross-section high resolution transmission electron microscopy (HRTEM). Pb–Mo–S coatings were found to be quite wear resistant; no more than 25% of the coating thickness was removed by 10,000 sliding cycles. Two wear mechanisms were identified. At the nanometer scale, wear proceeded in a two-part process: transformation of the coating surface to MoS2, then layer-by-layer removal of MoS2. At the micrometer scale, wear occurred by plowing. The long endurance of Pb–Mo–S coatings was attributed to slow wear of the coatings, with lubricant redistribution processes playing a minor role.  相似文献   

16.
The friction and wear behavior of aluminum-graphite fiber composites was examined as a function of the interfacial reaction zone. Sliding wear tests were performed on three different fiber orientations on a standard pin-on-disk tribology machine. The counterface was made of gray cast iron with a surface hardness of 92 HRB. The wear rate and friction coefficient were found to decrease exponentially with sliding time and eventually reached a steady state condition. This was attributed to the development of a lubricating transfer film on the sliding surface. The wear mechanism was investigated through the use of scanning electron microscopy analysis. A wear model was developed for specimens worn with fibers parallel to the sliding direction. This model incorporates three dominant wear mechanisms: (1) matrix removal by delamination, (2) fiber wear due to plowing and (3) fiber pull-out. The model was evaluated numerically and was found to agree with the experimental data. The model predicts that whenever fiber pull-out is a contributing mechanism in the wear, the wear rate is an exponential function of the normal load. In contrast, the wear rate of composites is proportional to the normal load in the absence of fiber pull-out.  相似文献   

17.
Margam Chandrasekaran  Nee Lam Loh 《Wear》2001,250(1-12):237-241
Artificial joints in orthopedics occupy a principal position owing to the increase in number of cases suffering from arthritis and associated diseases in addition to impairment caused by accidents. In this work, one of the most commonly used joint material, i.e. ultrahigh molecular weight polyethylene (UHMWPE), was tested against the duplex stainless steels instead of the conventional 316 L stainless steel. The UHMWPE was found to exhibit the lowest friction coefficient and wear rates when lubricated with water followed by globulin and glucose. The friction coefficient in the presence of egg albumen was higher along with high wear rates recorded. Post-test evaluation of surface roughness and wear scar/track analysis was performed to identify the wear mechanisms. Worn surfaces were analyzed using a differential scanning calorimeter for changes in crystallinity with sliding. The specimens tested under lubricated conditions with glucose, egg albumen and globulin indicated the presence of reaction products on the worn surface. Adhesive and corrosive wear mechanisms were the predominant modes of wear identified on the polymer samples. The wear tracks indicated that the proteins did react with the counterface material forming a thin deposit on them. Low temperature nitriding of the duplex stainless steel counterfaces were performed and the UHMWPE specimens were tested under similar conditions against the nitrided surfaces. Low temperature nitriding of the counterface did result in improved tribological behavior of UHMWPE and the corrosive effects were minimal.  相似文献   

18.
The effective life of artificial joints is approximately 15 years. A smooth metal sliding surface is presumably the most suitable when manufacturing artificial joints; however, the relationship between the characteristics of metal sliding surface and ultra high molecular polyethylene (UHMWPE) wear has not been confirmed. Further, there is no apparent proof that a smooth surface is the optimal option for the improvement in the wear resistance of artificial joints. In this study, we investigated the mechanism of UHMWPE wear and proved that scratch marks caused by a sliding motion against the metal surface are the prime cause of UHMWPE wear. Furthermore, we used a micro-dimpled surface as an effective sliding surface to reduce the UHMWPE wear. A 2-axes pin-on-plate sliding test proved that the life of artificial joints can be extended to approximately 35 years by using a micro-dimpled surface with 1-μm deep dimples.  相似文献   

19.
W. Shi  X. Y. Li  H. Dong   《Wear》2001,250(1-12):544-552
Surface modification of ultra-high molecular weight polyethylene (UHMWPE) has been explored using the novel non-line-of-slight plasma immersion ion implantation (PIII) with nitrogen. The modified surfaces were characterised by SEM and a Nano Test 600 testing machine. The tribological behaviour of PIII treated UHMWPE sliding against AISI 316L stainless steel counterfaces was evaluated using a pin-on-disc tribometer under water lubricated conditions. The experimental results show that PIII is a very promising surface engineering technique to improve such surface mechanical properties as surface hardness and elastic modulus of UHMWPE. As a result, the wear resistance of UHMWPE was significantly enhanced by a factor of three following PIII treatment, as compared with untreated material. It was found that the significantly improved wear resistance of PIII treated UHMWPE can be mainly attributed to ion bombardment induced cross-linking, and thus surface hardening.  相似文献   

20.
It is generally agreed that contact pressure and sliding speed are the predominant factors for the prediction of wear of ultrahigh‐molecular‐weight polyethylene (UHMWPE) in joint prostheses. A new parameter for predicting the wear of UHMWPE has been introduced with a wear test in vitro. The parameter is the time of exposure to a lubricating liquid on a bearing surface. A pin‐on‐disc machine was designed such that the exposure time of a Co Cr Mo alloy disc to a lubricating liquid could be varied. The specific wear of UHMWPE was increased by a decrease in the exposure time, even if the contact pressure and the sliding speed were held constant. The parameter is able to account for the contact pressure set in the experiment (2.0–20.0 mPa), and clarifies the conditions under which the specific wear of UHMWPE is found to be high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号