首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用烧结破碎法,以超细晶粒WC粉、Co粉为原料制备了WC-17%Co热喷涂粉末。用X-射线衍射和扫描电子显微镜对粉末的形貌和结构进行了研究,讨论了烧结温度、有机粘结剂、碳粉对粉末特性的影响。实验结果表明:将有机粘结剂添加到粉末中后,可有效地阻止超细WC/Co粉烧结时η相(Co3W3C、Co6W6C)的出现;除极少量碳溶于粘结相Co中外,碳主要以游离态形式存在,可抑止粉末热喷涂时WC的分解;制备超细WC-17%Co热喷涂粉末适宜的烧结温度是在1250℃左右。  相似文献   

2.
Research tasks at ENSMM/LMA are focused on the development of mixtures of very fine powders associated to polymer binders dedicated to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macrocomponents. Other research parts are the measurement of the shrinkage rate for cylindrical specimen in dilatometer during sintering stage and the beam bending tests during sintering process for to determine the viscosity of the sintered parts at high temperatures. It is important work to identify the constitutive law in a thermo-elasto-viscoplastic sintering model for the prediction of the shrinkage, relative density, the final residual stress and the deformation of the micro components.  相似文献   

3.
采用粉末微注射成形技术制作了ZrO2陶瓷微结构件,分析了其注射成形工艺,包括喂料配制、注射工艺及烧结工艺对微观组织的影响.实验结果表明,粉末体积分数为55%的生坯注射成形后在1 500℃下烧结2 h,采用排水法测得其微结构相对密度高达98.5%,采用纳米硬度分析法得到其微结构的显微硬度值为13.75 GPa.扫描电子显微镜(SEM)结果表明,提高模具温度和注射压力,有利于微结构的填充,进而改善微结构件的微观组织;高的烧结温度可以增加零件的致密度,但容易导致晶粒的过度长大和尺寸不均匀.激光共聚焦光学显微镜观察结果表明,使用亚微米级陶瓷超细粉得到的微结构具有良好的表面质量,其烧结前、后的表面粗糙度值分别为0.33μm和0.28μm.此外,提高粉末含量可以减小零件收缩率,从而有利于微结构的尺寸精度控制.  相似文献   

4.
Due to their complex rheological behavior, feedstocks for powder injection molding (PIM) may exhibit non-homogeneous flow and separation. This can produce defects of green parts during mold filling, resulting in their cracking and warpage during debinding and sintering, and ultimately in poor physical and mechanical properties of the final part. An experimental rheological study has been performed to evaluate the influence of solids loading, shear rate, and powder particle size on feedstock stability. A micro-rheological explanation is given for the macroscopic effect of separation, and an instability index has been defined to describe quantitatively the threshold beyond which the variation of viscosity becomes unacceptable for PIM purposes. A neural network model has been developed for predicting the viscosity of feedstocks made from binary blends, when the powder characteristics, blend composition, and shear rate are known. The system enables determination of the process parameters for which powder-binder separation occurs in a given feedstock.  相似文献   

5.
The current status of field assisted sintering technology (FAST) of structural metals from powder is critically reviewed. Recently, there have been significant increases in the uptake of FAST for metallic systems, composites and porous materials at the laboratory-scale. It is clear that FAST is tolerant of powder/particulate feedstock, allowing rapid production of materials, some of which would be challenging through conventional sintering techniques. Yet, the underlying mechanisms allowing this are not fully understood. Final specimen sizes tend to be small, which restricts rigorous mechanical assessment. This review demonstrates the clear benefits in transitioning laboratory-scale demonstrators to the industrial scale over the next few years. However, consideration will need to be given to size, throughput, and shape complexities to attract commercial investment.  相似文献   

6.
为了探究保障最终产品性能满足ASTM标准的粉末注射成形工艺,本文采用金属粉末注射成形方法,以德国Basf公司提供的喂料为原料,通过对注射参数优化获取1组最优注射工艺参数,用于后续脱脂及烧结工艺.利用拉伸、弯曲等力学实验,扫描电镜、金相光学显微镜等表征方法对材料的力学性能及微观结构进行表征,研究了注射、脱脂和烧结工艺参数...  相似文献   

7.
Micropart fabrication via 17-4 PH stainless nanopowder injection molding was investigated. The nanopowder was mixed with a binder that was based on wax to produce a feedstock composed of 45% powder and binder (the powder load). Initially, the fit and proper test was done before the micropart was made by making some bars of green samples, which the properties were examined after the sintering process. The examination involved the mechanical properties such as the porosity, hardness, and some of metallurgical aspects, such as the second-phase formation and the final compound after the sintering. The results showed that utilizing 17-4 PH stainless nanopowder is promising for micropart fabrication since it can form a nearly full-density sintered sample with a low porosity and good toughness, and can provide a smooth surface finish. After this, the investigations followed with the injection of the feedstock into the PDMS micromold that was formed by the nickel pattern from the X-Ray LIGA process. The green samples successfully produced a high-aspect-ratio sample with a thickness of up to 1 mm and an aspect ratio of 15 in the microchannel part. Then the green samples were sintered at 1,300 degrees C for 2 h, since from the initial test, they showed optimum parameters with nearly full density, low porosity, and a high degree of hardness. The research shows the excellent results of the application of the 17-4 PH stainless nanopowder to micropart fabrication.  相似文献   

8.
Abstract

Metal matrix composites, based on 316L stainless steel and reinforced with TiC and TiCN particles, were manufactured following a powder injection moulding route: mixing, preparation of feedstock, moulding, debinding and sintering. The 316L stainless steel and carbide powders were dry mixed and moulded with wax based binder. The critical powder loading for injection moulding was 62·5 vol.-% for all samples. Binder debinding was performed by solvent and thermal method. After debinding, the samples were sintered at 1250 and 1385°C for 1 h in pure H2. Metallographic studies were conducted to extend densification and the corresponding microstructural changes. The sintered samples were characterised by measuring tensile strength, hardness and wear behaviour. Wear loss was determined for all samples after wear tests. All powder, fracture surfaces of moulded and sintered samples, and worn surfaces of all the samples, were examined using scanning electron microscope. The sintered density of injection moulded 316L stainless steel samples, reinforced and unreinforced, increases with increasing sintering temperature. The addition of TiC and TiCN improves the hardness and wear resistance with increasing sintering temperature.  相似文献   

9.
Sintering of 17-4PH stainless steel feedstock for metal injection molding   总被引:1,自引:0,他引:1  
The sintering behavior of 17-4PH stainless steel feedstock for metal injection molding was investigated in the temperature range of 650-1050 °C. Effects of sintering conditions, such as sintering temperature and sintering atmosphere, were examined. Results showed that when sintered in the hydrogen/nitrogen atmosphere, the 17-4PH feedstock was oxidized over the temperature range of investigation. The degree of oxidization increased with the sintering temperature. The main oxidization product was Cr2O3 as revealed by X-ray diffraction and composition analysis. The oxidation can be avoided by sintering in vacuum or argon atmosphere.  相似文献   

10.
使用微米级316L不锈钢粉末和蜡基粘结剂制备热融性喂料,用FDM型金属3D打印方法和工艺3D打印成形目标模型生胚,经过脱脂和烧结成形为最终金属试样。对制备出的金属试样进行性能表征和测试,验证了此种成形方式的可行性,针对试样中析出物的形貌不规则和晶界上的夹杂物,研究了稀土La对析出物的影响。根据生胚脱脂后形成的微孔结构,提出一种液相添加稀土La的方法。结果表明:用FDM型3D打印能制备316L不锈钢试样,用液相添加法可向生胚中添加微量稀土La,质量比为0.3%的LaCl3能显著改善烧结后试样中析出物的微观形貌和分布。  相似文献   

11.
Traditional manufacturing of Inconel 718 components from castings and thermomechanical processing routes involve extensive post processing and machining to attain the desired geometry. Additive manufacturing (AM) technologies including direct energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM) and binder jet 3D printing (BJ3DP) can minimize scrap generation and reduce lead times. While there is extensive literature on the use of melting and solidification based AM technologies, there has been limited research on the use of binder jet 3D printing. In this paper, a brief review on binder jet additive manufacturing of Inconel 718 is presented. In addition, existing knowledge on sintering of Inconel 718 has been extended to binder jet 3D printing. We found that supersolidus liquid phase sintering (SLPS) is necessary to achieve full densification of Inconel 718. SLPS is sensitive to the feedstock chemistry that has a strong influence on the liquid volume fraction at the processing temperature. Based on these results, we discuss an empirical framework to determine the role of powder particle size and liquid volume fraction on sintering kinetics. The role of powder packing factor and binder saturation on microstructural evolution is discussed. The current challenges in the use of BJ3DP for fabrication of Inconel 718, as well as, extension to other metal systems, are presented.  相似文献   

12.
Advances in the understanding of sintering of powder mixtures contributed significantly to the growth of ferrous powder metallurgy industry. Solid-state sintering and liquid-phase activated sintering play an important role in the sintering of powder mixtures. In this paper, sintering of iron powder with graphite; iron powder with copper and graphite; iron powder with nickel and graphite; iron powder with phosphorus; and iron powder with boron is discussed. Mechanical properties of the sintered parts are presented along with application of these parts.  相似文献   

13.
An atomized iron powder used in conventional powder metallurgy, mixed with 4 wt.% Cu powders was injection molded with carbonyl iron powder and a sintering aid. The use of atomized iron powder can reduce cost, but decreases packing density and sintering rate. To improve the densification of atomized powders, 20-40 wt.% carbonyl iron powder was added for increasing packing density and promoting sintering. The sintered alloy was characterized by the bulk density, mechanical properties, and scanning electron microscope observations. The results of sintering for the samples added with 30 wt.% carbonyl powder show that the relative bulk density, hardness, tensile strength and elongation are up to 83.87%. HRF 92.2, 315.5 MPa and 4%, respectively. The proportion of carbonyl iron powders and sintering temperature were found to influence the relative bulk density and the mechanical properties of the specimens significantly.  相似文献   

14.
Abstract

Iron aluminides were prepared by a powder metallurgy process from elemental powders, mixtures of prealloyed and elemental powders, and prealloyed powder. The sintering behaviour of various powders was studied using scanning electron microscopy, optical microscopy, and density measurement. It was found that sintering of elemental powder involved two distinct processes, i.e. alloying and densification, but sintering of prealloyed powder involved densification alone. The addition of prealloyed powder to elemental powders was helpful in restraining the swelling of sintered samples, the degree of swelling of sintered samples being reduced as the amount of prealloyed powder increased. For samples made from Fe-25 at.-%Al prealloyed powder, remarkable shrinkage was measured after sintering at 1250°C for 1 h. Within the correct range, their density increased with sintering temperature and time, but prolonged sintering at high temperature resulted in the loss of aluminium and a two phase microstructure. The difference in sintering behaviour between the various powders was discussed on the basis of thermodynamics.  相似文献   

15.
Reaction-bonded alumina was fabricated using standard powder preparation methods and the low-pressure injection moulding (LPIM) forming technique, followed by reaction sintering. The feasibility of LPIM was investigated in terms of the compounding ability of a highly agglomerated mechanically alloyed powder in a non-polar organic vehicle, and the microstructural homogeneity and resulting reliability of sintered LPIM parts. The green density of LPIM parts after debinding, roughly corresponding to the solids loading in the LPIM feedstock, was in the range of fractional density achieved by dry pressing, although the powder packing and aluminium particle deformation during forming were not the same. LPIM forming and debinding induced microstructural inhomogeneities (i.e. larger voids due to trapped air and density fluctuations) which were reflected in a slightly lower Weibull modulus, while the average strength did not differ significantly from the values obtained with dry pressed samples. The microstructure and mechanical properties of sintered parts were also related to the purity of the starting powders. The presence of impurities in the starting aluminium powder resulted in a somewhat coarser microstructure, characterized by a broader Al2O3 grain-size distribution, as well as in the presence of a thin glassy phase on the grain boundaries and in partial destabilization of dispersed tetragonal (Y2O3-stabilized) ZrO2 particles. In spite of a less favourable microstructure, the room-temperature strength and Weibull modulus were still comparable to those obtained from high-purity starting powder. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

16.
表面活性剂对MIM硬质合金粘结剂和喂料性质的影响   总被引:2,自引:0,他引:2  
研究了表面活性剂对粘结剂润湿性能和对粘结剂与粉末分离的影响以及表面活性剂对喂料流变性能的影响。结果发现 :表面活性剂的加入 ,可以有效地改善粘结剂的润湿性能和增强粘结剂与粉末的结合力 ,并且可以改善喂料的流变性  相似文献   

17.
Solid-state sintering is a technologically important step in the fabrication of tungsten heavy alloys. This work addresses practical variables affecting the sinterability: powder particle size, powder mixing, and sintering temperature and time. Compositions containing 1 to 10 micrometer (μim) tungsten (W) powders can be fully densified at temperatures near the matrix solidus. Blending with an intensifier bar provided good dispersion of elemental powders and good as-sintered mechanical properties under adequate sintering conditions. Additional ball milling increases powder bulk density which primarily benefits mold and die filling. Although fine, 1 urn W powder blends have high sinterability, higher as-sintered ductilities are reached in shorter sintering times with coarser, 5 urn W powder blends; 10 urn W powder blends promise the highest as-sintered ductilities due to their coarse microstructural W.  相似文献   

18.
以硬脂酸为粉末改性剂, 聚乙二醇/聚乙烯醇缩丁醛/聚甲醛(PEG/PVB/POM)为粘结剂体系制备锆钛酸铅镧(PLZT)粉末注射成形喂料, 并通过先水脱脂后烧结的工艺制备了PLZT压电陶瓷。研究了硬脂酸用量对粉末特性、喂料黏度、水脱脂率以及坯体强度的影响, 并对烧结后陶瓷的微观形貌与电性能进行对比与分析。结果表明:硬脂酸通过湿法改性成功包覆于PLZT粉体表面, 硬脂酸改性打破了粉末间的团聚, 且当硬脂酸包覆量为2wt%时, 喂料具有较低的剪切黏度及较高的坯体弯曲强度。但过量改性反而使得喂料黏度上升, 坯体弯曲强度下降。改性后的粉体在坯体内分散均匀, 烧结后的陶瓷晶粒生长完善, 具有更大的烧结致密度。与未改性的PLZT陶瓷相比, 在2 kV/mm极化电压下, 2wt%硬脂酸改性的PLZT的压电常数d33由638 pC/N提高为682 pC/N。  相似文献   

19.
Aluminum nitride (AlN) is used for quick diffusion and elimination of heat that is generated from electronic devices, such as power modules used for hybrid cars and micro processing units (MPUs) of computers. AlN provides high thermal conductivity, and it is known that its sintering performance and sintered body characteristics vary with the quality of AlN raw powder. When two types of commercially available AlN raw powder produced by the same reductive nitriding method were compared, the sintering performance and the thermal conductivity of sintered compacts processed from low-price AlN material powder were found to be lower than those of sintered compacts processed from high-price, high-purity, evenly granulated, and fine AlN material powder. As one of the causes of the foregoing, the effect of coarse particles contained in AlN material powder was investigated. The investigation results indicated that the coarse particles were AlN and the powder with the coarse particles removed by sifting out with sieves provided sintering performance and sintering behavior similar to those of high-price and high-purity AlN material powder. It was therefore found that the coarse particle constituted a sintering inhibiting factor. This paper reports the investigation results.  相似文献   

20.
The effect of nickel powder additions (2 and 5 at.%) on the sintering behaviour of titanium powder has been investigated through the dilatometric sintering study. The sintering of titanium powder was found to be enhanced significantly and the activation energies were decreased with increasing nickel content. The sintering of Ti-2 at.% Ni system at lower temperature was found to be controlled by Ti-Ti and Ti-Ni solid state sintering, whereas inter-diffusion dominates in Ti-5 at.% Ni sintering. At higher temperatures, sintering was found to be controlled by mixed mechanisms, i.e. inter-diffusion, chemical reaction and transient liquid phase formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号