共查询到19条相似文献,搜索用时 62 毫秒
1.
为了对旋转机械中滚动轴承的运行状态进行故障监测和诊断,提出了一种基于EMD和Hilbert包络谱的滚动轴承故障诊断新方法.通过在滚动轴承实验台上提取振动信号,用EMD对数据进行分解得振动信号的固有模态函数分量(IMF分量),然后对IMF作Hilbert包络并进行谱分析.结果表明,该方法能够准确地识别和诊断出滚动轴承的运行状态和故障类型,非常适合滚动轴承故障精确诊断,具有很高的工程实用价值. 相似文献
2.
基于经验模态分解包络谱的滚动轴承故障诊断方法 总被引:4,自引:0,他引:4
针对滚动轴承故障振动信号的非平稳特征和传统包络分析法的缺陷,提出了一种基于经验模态分解包络谱的滚动轴承故障诊断方法.该方法首先采用经验模态分解将原始信号分解为若干个平稳的固有模态函数之和,然后求出包含主要故障信息的若干个固有模态函数分量的包络谱,再定义包络谱中故障特征频率处的幅值比为特征幅值比,最后以特征幅值比作为故障特征向量,输入神经网络,以神经网络的输出来判断滚动轴承的工作状态和故障类型.对滚动轴承内圈、外圈故障振动信号的分析结果表明,基于经验模态分解包络谱的故障诊断方法能有效地提取滚动轴承的故障特征. 相似文献
3.
4.
EMD模糊聚类法及在滚动轴承故障诊断中的应用 总被引:1,自引:0,他引:1
轴承故障是导致旋转机械失效的重要原因,故障诊断对保障轴承正常运行至关重要。文中提出经验模态分解(empirical mode decomposition,EMD)和模糊聚类相结合的滚动轴承故障诊断方法,以经验模态分解所得内禀模态函数能量值作为特征向量建立模糊关系矩阵,基于欧氏距离建立模糊相似矩阵,基于传递闭包法建立模糊等价矩阵,利用λ截矩阵实现聚类分析与模式识别。实例验证该方法可对不同故障状态的滚动轴承准确分类,实现故障诊断,诊断过程简单、准确、有效,具有一定的实用价值。 相似文献
5.
首先对滚动轴承振动信号进行经验模态分解;然后对分解后包含故障特征信息的本征模函数做Hilbert包络谱分析,在得到的包络谱中,清晰显示出故障特征信号的包络谱.试验结果表明,通过联合经验模态分解和Hilbert包络谱分析,能有效地提取出滚动轴承信号的故障信息,进而判定出轴承的损伤部位. 相似文献
6.
7.
针对经验模态分解(EMD)存在的模态混叠问题,提出一种奇异值分解(SVD)和改进经验模态分解相结合的信号分析新方法。该方法首先对故障信号进行SVD降噪,以消除随机干扰,再根据信号特征加入高频谐波信号并进行EMD进行分解,有效地减少模态混叠现象,最后对EMD分解得到的高频本征模态分量(IMF)进行代数运算得到故障冲击成分,经Hilbert包络分析,提取出故障特征信息。仿真信号分析了这种方法的实施过程,并将该方法成功运用于滚动轴承内圈和外圈故障的诊断中。实验结果证明:该方法能够有效地提取滚动轴承故障特征信息,实现故障诊断。 相似文献
8.
提出了一种基于经验模式分解(EMD)的高速滚动轴承故障诊断方法.首先介绍了经验模式分解方法的主要思想和算法;其次,针对高速滚动轴承,给出利用经验模式分解进行诊断的具体步骤;最后,成功地将此方法应用于某高速齿轮箱的滚动轴承故障诊断实践中.诊断结果表明,该方法能够有效提取出高速滚动轴承故障振动信号,从而提高了滚动轴承故障诊断的准确性. 相似文献
9.
提出了一种基于经验模式分解(EMD)的高速滚动轴承故障诊断方法。首先介绍了经验模式分解方法的主要思想和算法;其次,针对高速滚动轴承,给出利用经验模式分解进行诊断的具体步骤;最后,成功地将此方法应用于某高速齿轮箱的滚动轴承故障诊断实践中。诊断结果表明,该方法能够有效提取出高速滚动轴承故障振动信号,从而提高了滚动轴承故障诊断的准确性。 相似文献
10.
11.
FAULT DIAGNOSIS APPROACH FOR ROLLER BEARINGS BASED ON EMPIRICAL MODE DECOMPOSITION METHOD AND HILBERT TRANSFORM 总被引:2,自引:0,他引:2
Yu Dejie Cheng Junsheng Yang Yu College of Mechanical Automotive Engineering Hunan University Changsha China 《机械工程学报(英文版)》2005,18(2):267-270
Based upon empirical mode decomposition (EMD) method and Hilbert spectrum, a method for fault diagnosis of roller bearing is proposed. The orthogonal wavelet bases are used to translate vibration signals of a roller bearing into time-scale representation, then, an envelope signal can be obtained by envelope spectrum analysis of wavelet coefficients of high scales. By applying EMD method and Hilbert transform to the envelope signal, we can get the local Hilbert marginal spectrum from which the faults in a roller bearing can be diagnosed and fault patterns can be identified. Practical vibration signals measured from roller bearings with out-race faults or inner-race faults are analyzed by the proposed method. The results show that the proposed method is superior to the traditional envelope spectrum method in extracting the fault characteristics of roller bearings. 相似文献
12.
基于奇异谱的降噪方法及其在故障诊断技术中的应用 总被引:55,自引:6,他引:55
提出一种将振动信号在相空间进行重构,并利用重构吸引子轨道矩阵的奇异谱的特性来提高信噪比的方法。该方法已应用于滚动轴承和齿轮箱的故障诊断中,试验表明该方法能够有效地降低噪声,提高信噪比,突出振动信号的故障特征,从而提高设备故障诊断的准确率。 相似文献
13.
一种基于SVM和EMD的齿轮故障诊断方法 总被引:12,自引:3,他引:12
支持矢量机(Support vector machine,SVM)有比神经网络更强的泛化能力,且能保证找到的极值解就是全局最优解,同时它还较好地解决了小样本的学习分类问题。针对齿轮振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了一种基于经验模态分解(Empirical mode decomposition,EMD)和支持矢量机的齿轮故障诊断方法。首先对原始信号进行经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic mode function,IMF)之和,然后对每一个IMF分量建立AR模型,最后提取模型的自回归参数和残差的方差作为故障特征矢量,并以此作为SVM分类器的输入参数来识别齿轮的工作状态和故障类型。试验结果表明,在小样本情况下仍能准确、有效地对齿轮的工作状态和故障类型进行分类。 相似文献
14.
齿轮箱滚动轴承缺陷的两个主要特征不仅与频率有关,而且与时间有着密切的关系.如果单从时域或者频域分析滚动轴承的故障信号,很难获得故障信号的特征全貌.使用时间和频率的联合函数来表示信号,将联合时频分析引入滚动轴承的故障诊断,进行信号分析,会更符合实际.文中结合实例对行星齿轮箱滚动轴承的各种振动信号进行分析,结果表明,通过对信号作伪Wigner-Ville分布(pseudo-Wigner-Ville distribution,PWD),能形象、直观地反映出轴承故障的时-频域信息,而且对故障信息具有较强的判别能力,得到比较理想的诊断结果,为机械振动的非平稳时变信号的分析提供了方便可行的手段. 相似文献
15.
基于连续小波变换的信号检测技术与故障诊断 总被引:33,自引:3,他引:33
通过分析指出,连续小波变换具有很强的弱信号检测能力,非常适合故障诊断领域。从参数离散到参数优化系统研究了连续小波变换的工程应用方法,建立了“小波熵”的概念,并以此作为基小波参数的择优标准。论文最后把连续小波技术应用在滚动轴承滚道缺陷和齿轮裂纹的识别中,诊断效果十分理想。 相似文献
16.
滚动轴承振动的周期平稳性分析及故障诊断 总被引:2,自引:0,他引:2
分析滚动轴承出现故障后振动信号的特征,在给出滚动轴承冲击信号数学模型的基础上,指出滚动轴承故障为典型的非平稳信号,具有很宽的频带,用幅值谱难以获得故障特征.利用滚动轴承回转工作的特点,推导滚动轴承故障信号的循环平稳性,指出该故障信号为几乎周期平稳信号.简单介绍二阶循环统计量的解调特性,提出先对滚动轴承故障信号进行带通滤波,然后利用二阶循环统计量解调来进行故障特征识别.对工业现场故障数据的分析表明所提出方法的有效性. 相似文献
17.
提出一种基于总体平均经验模态分解(ensemble empirical mode decomposition,EEMD)和奇异值差分谱的轴承故障诊断方法。首先将非平稳的原始轴承振动信号通过EEMD方法分解成若干个平稳的本征模函数(intrinsic modefunction,IMF);由于背景噪声的影响,从各个IMF的频谱中难以准确地得到故障频率。对IMF分量构建Hankel矩阵,并进行奇异值分解,进一步找到奇异值差分谱,根据奇异值差分谱理论对某IMF分量进行消噪和重构,然后再求其频谱,便能准确地得到故障频率。实验结果表明,所提出的方法能有效地应用于轴承的故障诊断。 相似文献
18.
提出基于Lyapunov指数能谱熵的航空发动机转子-机匣系统状态识别和故障诊断新方法.基于Lyapunov指数谱,提出并定义系统Lyapunov指数能谱熵;在基于实测的航空发动机机匣振动时间序列求解系统不同故障状态的Lyapunov指数谱的基础上,获得系统不同故障状态下的Lyapunov指数能谱熵,并将其应用于航空发动机转子-机匣系统的故障诊断.研究结果表明,航空发动机机匣振动时间序列在不同单一故障状态下具有不同的Lyapunov指数能谱熵,此时可以Lyapunov指数能谱熵作为识别其状态的新特征量. 相似文献
19.
Shen GuojiTao LiminChen ZhongshengCollege of Mechantronic Engineeringand Automation National University ofDefense Technology Changsha China 《机械工程学报(英文版)》2004,17(3):454-456
Time synchronous averaging of vibration data is a fundament technique for gearbox diagnosis. Currently, this technique relies on hardware tachometer to give phase synchronous information. Empirical mode decomposition (HMD) is introduced to replace time synchronous averaging of gearbox vibration signal. With it, any complicated dataset can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The key problem is how to assure that vibration signals deduced by gear defects could be sifted out by HMD. The characteristic vibration signals of gear defects are proved IMFs, which makes it possible to utilize EMD for the diagnosis of gearbox faults. The method is validated by data from recordings of the vibration of a single-stage spiral bevel gearbox with fatigue pitting. The results show EMD is powerful to extract characteristic information from noisy vibration signals. 相似文献