首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnO and Sn doped ZnO (ZnO:Sn) thin films at various doping concentrations from 1 to 10 at.% were prepared by the sol-gel method for an ethanol sensing application. The Sn doping significantly influenced the film growth, grain size and response of the films. The XRD patterns showed that the hexagonal wurtzite structure of the ZnO film was retained even after the Sn doping. The crystallite grain sizes of the ZnO:Sn thin films at 0, 2 and 4 at.% were estimated by using the typical Scherrer's equation. The crystalline quality of the films at 6, 8 and 10 at.% of Sn was degenerated. Typical FESEM images demonstrated the different morphologies for the ZnO:Sn thin films at various Sn concentrations; many pores of various dimensions were observed depending on the doping level. A TEM analysis of the ZnO:Sn thin films at 0, 2 and 4 at.% was performed to verify the grain size. The optimum Sn doping level of ZnO:Sn thin film for ethanol sensing was estimated to be 4 at.%. The 4 at.% sample obtained the highest response to ethanol vapor in the 10-400 ppm level range at a low operating temperature of 250 °C. The sensing mechanism was explained by a variation in the sensitivity model from a neck-grain-boundary controlled sensitivity to a neck-controlled sensitivity. Our work demonstrates the ability to reduce the working temperature as well as to increase the response of ZnO thin film based gas sensors to detect ethanol, which would be of great merit for commercialized applications.  相似文献   

2.
Unique and novel thin films with aluminium (Al)-doped zinc oxide (ZnO) nanostructures consisting of nanorod-nanoflake networks were prepared for metal-semiconductor-metal (MSM)-type ultraviolet (UV) photoconductive sensor applications. These nanostructures were grown on a glass substrate coated with a seed layer using a combination of ultrasonic-assisted sol-gel and immersion methods. The synthesised ZnO nanorods had diameters varying from 10 to 40 nm. Very thin nanoflake structures were grown vertically and horizontally on top of the nanorod array. The thin film had good ZnO crystallinity with a root mean square roughness of approximately 13.59 nm. The photocurrent properties for the Al-doped ZnO nanorod-nanoflake thin films were more than 1.5 times greater than those of the seed layer when the sensor was illuminated with 365 nm UV light at a density of 5 mA/cm2. The responsivity of the device was found to be dependent on the bias voltage. We found that similar photocurrent curves were produced over eight cycles, which indicated that the UV sensing capability of the fabricated sensor was highly reproducible. Our results provide a new approach for utilising the novel structure of Al-doped ZnO thin films with a nanorod-nanoflake network for UV sensor applications. To the best of our knowledge, UV photoconductive sensors using Al-doped ZnO thin films with a nanorod-nanoflake network have not yet been reported.  相似文献   

3.
Pure and Cu-doped ZnO nanofibers were synthesized via electrospinning technology. The morphology and structure of the as-synthesized nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The effects of Cu doping on H2S sensing properties at low concentration (1-10 ppm) were investigated at 230 °C. The results show that the H2S sensing properties of ZnO nanofibers are effectively improved by Cu doping: 6 at% Cu-doped ZnO nanofibers show a maximum sensitivity to H2S gas, and the response to 10 ppm H2S is one order of magnitude higher than the one of pure ZnO nanofibers.  相似文献   

4.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

5.
Sn-, Ni-, Fe- and Al-doped ZnO and pure ZnO are prepared by coprecipitation method, and characterized by scanning electron microscope (SEM), energy diffraction spectra (EDS) and X-ray diffraction (XRD). Their formaldehyde gas sensing properties are evaluated and the results show that 2.2 mol% Sn dopant can increase the response of ZnO by more than 2 folds, while other dopants increase little response or even decrease response. Further, CdO is used to activate ZnO based formaldehyde sensing material. It is demonstrated that 10 mol% CdO activated 2.2 mol% Sn-doped ZnO has the highest formaldehyde gas response, with a linear sensitivity of ∼10/ppm at lowered work temperature of 200 °C than 400 °C of pure ZnO, and high selectivity over toluene, CO and NH3, as well as good stability tested in 1 month.  相似文献   

6.
Quantum size ZnO crystals have been synthesized successfully by a room temperature sol-gel process. Oleic acid (OA) has been used as capping agent to control the particle size of ZnO. The crystal structure and size of the ZnO are characterized by the X-ray diffraction (XRD) and transmission electron microscope (TEM). The XRD results show the as-synthesized ZnO has hexagonal wurtzite structure and the average crystallite size is 5.7 nm which is little less than TEM result. It is testified by photoluminescence (PL) and Raman spectra that the quantum size ZnO keeps the crystal structure of the bulk ZnO and possesses more surface defects. The quantum size ZnO has the highest response of 280 to NO2 and the highest selectivity of 31 and 49 corresponding to CO and CH4 at operating temperature of 290 °C. The effect of calcination temperatures on sensing property and transient response of the ZnO sensor are also investigated.  相似文献   

7.
Detection of low concentrations of petroleum gas was achieved using transparent conducting SnO2 thin films doped with 0–4 wt.% caesium (Cs), deposited by spray pyrolysis technique. The electrical resistance change of the films was evaluated in the presence of LPG upon doping with different concentrations of Cs at different working temperatures in the range 250–400 °C. The investigations showed that the tin oxide thin film doped with 2% Cs with a mean grain size of 18 nm at a deposition temperature of 325 °C showed the maximum sensor response (93.4%). At a deposition temperature of 285 °C, the film doped with 3% Cs with a mean grain size of 20 nm showed a high response of 90.0% consistently. The structural properties of Cs-doped SnO2 were studied by means of X-ray diffraction (XRD); the preferential orientation of the thin films was found to be along the (3 0 1) directions. The crystallite sizes of the films determined from XRD are found to vary between 15 and 60 nm. The electrical investigations revealed that Cs-doped SnO2 thin film conductivity in a petroleum gas ambience and subsequently the sensor response depended on the dopant concentration and the deposition temperature of the film. The sensors showed a rapid response at an operating temperature of 345 °C. The long-term stability of the sensors is also reported.  相似文献   

8.
ZnO nanoparticles loaded with 0.2-2.0 at.% Pt have been successfully produced in a single step by flame spray pyrolysis (FSP) technique using zinc naphthenate and platinum(II) acetylacetonate, as precursors dissolved in xylene and their acetylene sensing characteristics have been investigated. The particle properties were analyzed by XRD, BET, TEM, SEM and EDS. Under the 5/5 (precursor/oxygen) flame condition, ZnO nanoparticles and nanorods were observed. The crystallite sizes of ZnO spherical and hexagonal particles were found to be ranging from 5 to 20 nm while ZnO nanorods were seen to be 5-20 nm in width and 20-40 nm in length. In addition, very fine Pt nanoparticles with diameter of ∼1 nm were uniformly deposited on the surface of ZnO particles. From gas-sensing characterization, acetylene sensing characteristics of ZnO nanoparticles is significantly improved as Pt content increased from 0 to 2  at.%. The 2 at.% Pt loaded ZnO sensing film showed an optimum C2H2 response of ∼836 at 1% acetylene concentration and 300 °C operating temperature. A low detection limit of 50 ppm was obtained at 300 °C operating temperature. In addition, Pt loaded ZnO sensing films exhibited good selectivity towards hydrogen, methane and carbon monoxide.  相似文献   

9.
We report the synthesis of flowerlike ZnO nanostructure using a facile hydrothermal process, and the investigation on the ammonia (NH3)-sensing properties of the pure and palladium (Pd)-sensitized flowerlike ZnO nanostructure. The phase purity, morphology, and structure of the pure and Pd-sensitized ZnO nanostructure are investigated. The characterized results reveal that the flowerlike ZnO has a wurtzite structure and is composed of numerous aggregated single-crystalline ZnO nanorods with a diameter of about 60 nm. Having fabricated gas sensors based on the pure and Pd-sensitized flowerlike ZnO, we find that the Pd-sensitized sensor exhibits a response of 45.7-50 ppm NH3 at 210 °C, which is about 8 times higher than that of pure ZnO at the optimal operating temperature of 350 °C. The enhanced NH3-sensing performance demonstrates that the significant decrease in optimal operating temperature and the distinct increase in response are attributed to the sensitization effect of Pd.  相似文献   

10.
In situ SiO2-doped SnO2 thin films were successfully prepared by liquid phase deposition. The influence of SiO2 additive as an inhibitor on the surface morphology and the grain size for the thin film has been investigated. These results show that the morphology of SnO2 film changes significantly by increasing the concentration of H2SiF6 solution which decreases the grain size of SnO2. The stoichiometric analysis of Si content in the SnO2 film prepared from various Si/Sn molar ratios has also been estimated. For the sensing performance of H2S gas, the SiO2-doped Cu-Au-SnO2 sensor presents better sensitivity to H2S gas compared with Cu-Au-SnO2 sensor due to the fact that the distribution of SiO2 particles in grain boundaries of nano-crystallines SnO2 inhibited the grain growth (<6 nm) and formed a porous film. By increasing the Si/Sn molar ratio, the SiO2-doped Cu-Au-SnO2 gas sensors (Si/Sn = 0.5) exhibit a good sensitivity (S = 67), a short response time (t90% < 3 s) and a good gas concentration characteristic (α = 0.6074). Consequently, the improvement of the nano-crystalline structures and high sensitivity for sensing films can be achieved by introducing SiO2 additive into the SnO2 film prepared by LPD method.  相似文献   

11.
ZnO nanoparticles (NPs) of 5-15 nm size and nanowires (NWs) of 50-100 nm dia., exhibiting p and n-type characteristics, respectively, have been synthesized using simple chemical process. ZnO NW-films exhibited good sensitivity and selectivity towards H2S in ppm range with fast response and recovery times. Interestingly, ZnO NP-films showed p-type conductivity that has been obtained for the first time without intentional doping while NW-films showed n-type conduction as has also been reported in various earlier studies. The p- and n-type conductivities in NP- and NW-films have been confirmed using hot probe and Kelvin probe measurements. The n-type behavior of NW-films is attributed to oxygen vacancies, whereas the p-type nature of NP-films is attributed to the zinc vacancy, surface acceptor levels created by the adsorbed oxygen and/or the unintentional carbon doping in ZnO.  相似文献   

12.
Unloaded ZnO and Nb/ZnO nanoparticles containing 0.25, 0.5 and 1 mol.% Nb were produced in a single step by flame-spray pyrolysis (FSP) technique. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The BET surface area (SSABET) of the nanoparticles was measured by nitrogen adsorption. FSP yielded small Nb particles attached to the surface of the supporting ZnO nanoparticles, indicating a high SSABET. The morphology and accurate size of the primary particles were further investigated by TEM. Nb/ZnO nanoparticles paste composed of ethyl cellulose and terpineol as binder and solvent respectively was coated on Al2O3 substrate interdigitated with gold electrodes to form thick films by spin coating technique. After the sensing tests, the morphology and the cross-section of sensing film were analyzed by SEM and EDS analyses. The influence on a low dynamic range of Nb concentration on NO2 response (0.1-4 ppm) of thick film sensor elements was studied at the operating temperatures ranging from 250 to 350 °C in the presence of dry air. The optimum Nb concentration was found be 0.5 mol.% and 0.5 mol.% Nb exhibited an optimum NO2 response of ∼1640 and a short response time (27 s) for NO2 concentration of 4 ppm at 300 °C.  相似文献   

13.
Porous gas sensing films composed of TiO2 nanotubes were fabricated for the detection of volatile organic compounds (VOCs), such as alcohol and toluene. In order to control the microstructure of TiO2 nanotubular films, ball-milling treatments were used to shorten the length of TiO2 nanotubes and to improve the particle packing density of the films without destroying their tubular morphology and crystal structure. The ball-milling treatment successfully modified the porosity of the gas sensing films by inducing more intimate contacts between nanotubes, as confirmed by scanning electron microscopy (SEM) and mercury porosimetry. The sensor using nanotubes after the ball-milling treatment for 3 h exhibited an improved sensor response and selectivity to toluene (50 ppm) at the operating temperature of 500 °C. However, an extensive ball-milling treatment did not enhance the original sensor response, probably owing to a decrease in the porosity of the film. The results obtained indicated the importance of the microstructure control of sensing layers in terms of particle packing density and porosity for detecting large sized organic gas molecules.  相似文献   

14.
真空蒸发沉积薄膜再经热氧化获得n型掺La的ZnO和SnO2薄膜(玻璃衬底)研究掺La含量与热氧化工艺对薄膜的物相结构、表面形貌和气敏特性的影响.实验给出:掺La使薄膜表面颗粒细化,随La含量增加,ZnO,SnO2薄膜平均晶粒尺寸均增大.掺La可明显降低2种薄膜的气敏工作温度相比之下,掺La对ZnO薄膜的灵敏度改善明显优...  相似文献   

15.
Au/SnO2 core-shell structure nanoparticles (NPs) were synthesized using two methods, microwave and conventional precipitation. In both cases, the size of the Au core was 12-18 nm and the thickness of the SnO2 shell was 8-12 nm. The particle size of SnO2 synthesized using the microwave and precipitation method was 3-5 nm and 1-2 nm, respectively. Upon heating to 400-600 °C, both particles maintained their core-shell morphology but the smaller SnO2 particles prepared using the precipitation method were more sintered. The resistance changes in films of these particles were measured as a function of CO concentration. The Au/SnO2 particles prepared using the microwave method showed higher sensor response than those prepared using the precipitation method, even providing a significant signal at testing temperatures approaching ambient conditions, thereby affording a new class of material for gas sensing. Both sets of core-shell particles showed higher sensor response than the SnO2 nanoparticles. The role of the Au core as a catalyst in improving the adsorption and oxidation of CO gas is important for improving the low temperature response. In addition, the maintenance of the size of SnO2 in the microwave method during sintering contributed to the higher response towards CO sensing.  相似文献   

16.
Nanocrystalline cadmium indium oxide (CdIn2O4) thin films of different thicknesses were deposited by chemical spray pyrolysis technique and utilized as a liquefied petroleum gas (LPG) sensors. These CdIn2O4 films were characterized for their structural and morphological properties by means of X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The dependence of the LPG response on the operating temperature, LPG concentration and CdIn2O4 film thickness were investigated. The results showed that the phase structure and the LPG sensing properties changes with the different thicknesses. The maximum LPG response of 46% at the operation temperature of 673 K was achieved for the CdIn2O4 film of thickness of 695 nm. The CdIn2O4 thin films exhibited good response and rapid response/recovery characteristics to LPG.  相似文献   

17.
One-dimensional (1D) ZnO nanorods with pencil-like shape and high aspect ratio were successfully synthesized using a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal process at 90 °C. The surface morphology and structure of nanocrystals were characterized by FE-SEM, XRD and XPS analysis. Experimental results show that the surfactant and base concentration play important roles in the formation and growth orientation of ZnO nanorods. The ZnO nanorods synthesized exhibits high response and selectivity to NO2, the highest response to 40 ppm NO2 reached 206 and the selectivity with respect to CO and CH4 at same concentration reached 10.3 and 30 times, respectively. The effects of synthesis method, surfactant and calcination condition on sensing properties were systematically investigated. The results indicate that the CTAB-assisted low temperature hydrothermal process is a potentially facile method for synthesis of 1D ZnO nanorods and excellent potential candidates as gas sensing materials.  相似文献   

18.
The conductometric gas sensing characteristics of Cr2O3 thin films - prepared by electron-beam deposition of Cr films on quartz substrate followed by oxygen annealing - have been investigated for a host of gases (CH4, CO, NO2, Cl2, NH3 and H2S) as a function of operating temperature (between 30 and 300 °C) and gas concentration (1-30 ppm). We demonstrate that these films are highly selective to H2S at an operating temperature of 100 °C, while at 220 °C the films become selective to Cl2. This result has been explained on the basis of depletion of chemisorbed oxygen from the surface of films due to temperature and/or interaction with Cl2/H2S, which is supported experimentally by carrying out the work function measurements using Kelvin probe method. The temperature dependent selectivity of Cr2O3 thin films provides a flexibility to use same film for the sensing of Cl2 as well as H2S.  相似文献   

19.
Undoped ZnO and Mg0.1Zn0.9O films, both with good crystalline quality and smooth surface, were grown on c-cut sapphire by pulsed laser deposition (PLD) technique. Hydrogen-sensing measurements indicated that the MZO film showed much higher H2 sensing performance than the undoped ZnO film did. The sensor response is 2.9 for undoped ZnO film to 5000 ppm H2 at 300 °C. The gas response increased to about 50 for the MZO film measured under the same condition. To understand the enhancement of the sensing performances of the MZO film, the gas sensing mechanism of the films was proposed and discussed.  相似文献   

20.
Gong  Xia  Liu  Zhou   《Sensors and actuators. B, Chemical》2008,134(1):57-61
Sol–gel dip coating technique was employed to prepare Cu-doped SnO2 thin films, which were able to detect H2S gas at room temperature with high sensitivity and revealed fast response characteristics. The highest sensor response (the ratio of resistance in air versus in H2S) was 3648 under H2S concentration of 68.5 ppm at room temperature. Recoverability of the thin films appeared when the temperature raised to 50 °C. The films were analyzed by means of XRD and the dried gel powder was studied by TG-DTA test. Influences of sintering temperature and doping level on the H2S response are discussed. The average grain size of the SnO2 was about 25 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号