首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
介绍了化学气相沉积金刚石薄膜的的主要方法,着重讨论了金刚石的摩擦学性能研究,简要分析了化学气相沉积金刚石薄膜中存在的问题。  相似文献   

2.
化学气相沉积金刚石薄膜的摩擦学性能研究进展   总被引:2,自引:0,他引:2  
介绍了化学气相沉积金刚石薄膜的主要方法 ,着重讨论了金刚石薄膜的摩擦学性能研究 ,简要分析了化学气相沉积金刚石薄膜中存在的问题。  相似文献   

3.
微波等离子体化学气相沉积技术制备金刚石薄膜的研究   总被引:1,自引:0,他引:1  
介绍了微波等离子体化学气相沉积法(MPCVD)制备金刚石薄膜的研究情况,重点论述了该法的制备工艺对金刚石薄膜质量的影响及其制备金刚石薄膜的应用前景。  相似文献   

4.
基片位置对MWPCVD制备金刚石薄膜的影响   总被引:2,自引:1,他引:1  
在石英钟罩式微波等离子体化学气相沉积实验装置中研究了基片位置对金刚石薄膜沉积质量的影响。扫描电子显微镜显微形貌观察和激光喇曼谱分析表明,对微波等离子体化学气相沉积制备金刚石薄膜而言,基片位置处于近等离子体球下游区域将有利于改善金刚石薄膜沉积质量。  相似文献   

5.
CVD金刚石膜研究进展和应用   总被引:3,自引:0,他引:3  
评论国内外化学气相沉积的金刚石膜制备技术,核化和生长,性质表征、异质外延生长及其应用等方面研究的最新进展和应用前景。  相似文献   

6.
金曾孙  吕宪义 《真空》1990,(5):21-24
本文研究了用热解化学气相沉积方法在硅单晶衬底上制备的金刚石膜对硅衬底的红 外透过率的影响,发现有些金刚石薄膜具有明显的红外增透性质。  相似文献   

7.
在石英钟罩式微波等离子体化学气相沉积实验装置中研究了基片位置对金刚石薄膜沉积质量的影响。扫描电子显微镜显微形貌观察和激光喇曼谱分析表明 ,对微波等离子体化学气相沉积制备金刚石薄膜而言 ,基片位置处于近等离子体球下游区域将有利于改善金刚石薄膜沉积质量。  相似文献   

8.
ZnO薄膜气相法制备   总被引:1,自引:0,他引:1  
ZnO薄膜具有压电、光电、压敏、气敏、发光等多种特性,应用十分广泛。介绍了ZnO薄膜气相法制备原理中的各类主要方法,包括脉冲激光沉积、磁控溅射、分子束外延、金属有机化合物化学气相沉积、单源化学气相沉积和等离子体增强化学气相沉积等技术;分析了这些方法的优缺点;展望了ZnO薄膜今后的研究方向。  相似文献   

9.
评述了金刚石薄膜的化学气相沉积方法,介绍了金刚石薄膜在工业中的应用前景,并分析了大规模应用所面临的技术困难。  相似文献   

10.
类金刚石薄膜的摩擦学特性及磨损机制研究进展   总被引:9,自引:0,他引:9  
类金刚石薄膜已显示了重要的摩擦学应用价值,其中化学气相沉积的类金刚石薄膜(DLC)具有膜层致密、厚度均匀、摩擦学性能优良等特点成为广泛采用的一种沉积方法.本文介绍了气源成分、基体材料、摩擦环境、摩擦对偶、载荷及速度对化学气相沉积制备类金刚石薄膜的摩擦学特性的影响,概述了其摩擦磨损机理,同时探讨了进一步研究工作的方向.  相似文献   

11.
硫化锌窗口上CVD法制备金刚石膜的研究进展   总被引:1,自引:0,他引:1  
金刚石具有优异的红外透过性能,可作为硫化锌红外窗口的保护膜。但由于CVD金刚石的沉积过程会刻蚀硫化锌衬底,导致在窗口表面直接生长金刚石膜比较困难。本文主要综述了近年来通过添加过渡层沉积金刚石薄膜的方法和光学焊接金刚石厚膜的方法来增强硫化锌窗口的性能,并介绍了CVD金刚石膜的光学应用及其目前所存在的问题,最后对未来CVD金刚石膜发展的方向作出了展望。  相似文献   

12.
Vapor‐phase deposition methods allow the synthesis and engineering of organic and inorganic thin films, with high control on the chemical composition, physical properties, and conformality. In this review, the recent applications of vapor‐phase deposition methods such as initiated chemical vapor deposition (iCVD), plasma enhanced chemical vapor deposition (PE‐CVD), and atomic layer deposition (ALD), for the encapsulation of active pharmaceutical drugs are reported. The strategies and emergent routes for the application of vapor‐deposited thin films on the drug controlled release and for the engineering of advanced release nanostructured devices are presented.
  相似文献   

13.
Investigation into polishing process of CVD diamond films   总被引:1,自引:0,他引:1  
A new technique used for polishing chemical vapor deposition (CVD) diamond films has been investigated, by which rough polishing of the CVD diamond films can be achieved efficiently. A CVD diamond film is coated with a thin layer of electrically conductive material in advance, and then electro-discharge machining (EDM) is used to machine the coated surface. As a result, peaks on the surface of the diamond film are removed rapidly. During machining, graphitization of diamond enables the EDM process to continue. The single pulse discharge shows that the material of the coated layer evidently affects removal behavior of the CVD diamond films. Compared with the machining of ordinary metal materials, the process of EDM CVD diamond films possesses a quite different characteristic. The removal mechanism of the CVD diamond films is discussed.  相似文献   

14.
Chemical vapor deposition (CVD) is an established process used to deposit thin films of advanced materials, based on chemical reactions. Three recent developments in CVD materials processing are described. Low pressure CVD is used extensively in the semiconductor, microelectronics, and optoelectronics industries for depositing stabilized oxides to protect graphite composites, and hard coatings of titanium compounds for cutting tools. Metallorganic CVD is the primary process for depositing the III-V group elements for advanced epitaxial semiconductor designs. Plasma-enhanced CVD is based on the ionization of chemical species and is growing rapidly in importance in areas such as the deposition of diamond films in a microwave plasma.  相似文献   

15.
In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm × 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides.Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation.Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively.  相似文献   

16.
综述了微波等离子体化学气相沉积(MPCVD)法制备金刚石膜技术,表明MPCVD是高速、大面积、高质量制备金刚石膜的首选方法。介绍了几种常用的MPCVD装置类型,从MPCVD装置的结构特点可以看到,用该类型装置在生长CVD金刚石膜时显示出独特的优越性和灵活性。用MPCVD法制备出的金刚石膜其性能接近甚至超过天然金刚石,并在多个领域得到广泛应用。  相似文献   

17.
N. Ikenaga  N. Sakudo  H. Yasui 《Vacuum》2006,80(7):810-813
Diamond-like carbon (DLC) films made by plasma chemical vapor deposition (CVD) have many useful properties for tribological characteristics. Especially, friction coefficient is very low. However, the films have weak points i.e., very low heatproof temperature of less than 300 °C and low hardness insufficient for industrial applications like machine tools. On the other hand, it is well known that diamond films made by plasma CVD have excellent hardness. But, they also have inferior properties for industrial applications, such as higher surface roughness and lower critical load than DLC films. In this study, we developed hybrid nano-diamond (HND) films that are formed by alternately depositing DLC films and diamond films in a same chamber. The HND films have sufficiently high hardness as well as excellent tribological characteristics due to the multi-layer structure of DLC and diamond. The process of forming HND films are discussed.  相似文献   

18.
The influence of deposition temperature in the properties of synthetic diamond films grown by two different chemical vapor deposition (CVD) techniques, hot-filament- and microwave-plasma-assisted, was investigated. These samples were obtained using the optimal growth conditions previously achieved in this work. Raman spectroscopy was employed in order to investigate the diamond film quality as a function of the deposition temperature. It was found that the nondiamond carbon bands decrease as the deposition temperature increases for both the deposition methods, leading to higher-quality diamond films. The micro- and macro-Raman spectra showed that the nondiamond band is already present in a single diamond grain. Both techniques provided well homogeneous diamond films and with equivalently good quality. Boron-doped diamond films with different carrier concentration levels were also studied. In order to get details about the electrical properties of the films, resistivity as a function of the boron concentration—in association with Raman spectra—and temperature-dependent transport measurements were employed. The results showed that the boron doping is the main responsible for the conductivity and that the variable range hopping (VRH) mechanism dominates the transport in these doped diamond films.  相似文献   

19.
Diamond and diamond-like carbon have properties which in principle make them ideally suited to a wide variety of thin-film applications. The widespread use of diamond thin films, however, has been limited for a number of reasons related largely to the lack of understanding and control of the nucleation and growth processes. Real-time, in-situ studies of the surface of the growing diamond film are experimentally difficult because these films are normally grown under a relatively high pressure of hydrogen, and conventional surface analytical methods require an ultrahigh vacuum environment. Pulsed ion beam based analytical methods with differentially pumped ion sources and particle detectors are able to characterize the uppermost atomic layer of a film during growth at ambient pressures in the range 0.7–27 Pa (4–6 orders of magnitude higher than other surface-specific analytical methods). We describe here a system which has been developed for the purpose of determining the hydrogen concentration and bonding sites on diamond surfaces as a function of sample temperature and ambient hydrogen pressure under hot-filament chemical vapor deposition (CVD) growth conditions. It is demonstrated that as the hydrogen partial pressure increases the saturation hydrogen coverage of the surface of a CVD diamond film increases, but that the saturation level depends on the atomic hydrogen concentration and substrate temperature. At the highest temperatures studied (700 °C), it was found that the surface hydrogen concentration did not exceed 1/4 monolayer.  相似文献   

20.
A closed system hot filament chemical vapor deposition (CVD) reactor has been used to deposit diamond films on silicon substrates. A fixed charge of hydrogen gas is fed into the deposition system until the desired deposition pressure level is reached. A solid graphite cylindrical rod held above the tungsten filament was the carbon source. System parameters for diamond film growth have been determined. The diamond structure of the films has been verified by x-ray diffraction (XRD). Morphology typical of CVD diamond films has been observed in scanning electron microscopy (SEM). The quality of the diamond films has been evaluated by micro-Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号