首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of native starches can be used to obtain special sensory properties avoiding the use of chemically modified starches. The mixture design approach was used to analyze the textural properties (hardness, adhesiveness, cohesiveness and gumminess) of gels obtained with different proportions of yam, corn and cassava starches (6% total solids) and related to microstructural characteristics. Maximum limits of 60% yam starch and 70% corn starch and minimum level of 30% cassava starch were fixed to minimize syneresis under storage. Hardness, adhesiveness and gumminess increased with the proportion of corn starch in the blends. The lowest values of hardness corresponded to the blends containing higher proportions of cassava starch, that has the lowest amylose content. Corn starch was the component that less contributed to cohesiveness. The characteristic high cohesiveness of cassava starch pastes (related to its higher amylopectin content) was reduced when it was mixed in adequate proportions with yam and/or corn starches. Gels containing only yam starch presented syneresis values close to 40% after 24° h storage at 4°C; the decrease of the maximum level of yam starch to 60% as well as the inclusion of cassava starch in the blends reduced weight losses. Disadvantages found in gels containing individual starches, such as exudate in yam and corn starch gels, and excessive cohesiveness in cassava starch gels, are minimized improving their possible applications, when blends are used.  相似文献   

2.
Amylomaltase (AM) (4-α-d-glucanotransferase; E.C. 2.4.1.25) from Thermus thermophilus was used to modify starches from various botanical sources including potato, high amylose potato (HAP), maize, waxy maize, wheat and pea, as well as a chemical oxidized potato starch (Gelamyl 120). Amylopectin chain length distribution, textural properties of gels and molecular weight of 51 enzyme and 7 non-enzyme-modified starches (parent samples) were analyzed. Textural data were compared with the textural properties of gelatin gels. Modifying starch with AM caused broadening of the amylopectin chain length distribution, creating a unimodal distribution. The increase in longer chains was supposedly a combined effect of amylose to amylopectin chain transfer and transfer of cluster units within the amylopectin molecules.Exploratory principal component analysis (PCA) data analysis revealed that the data were composed of two components explaining 94.2% of the total variation. Parent starches formed a cluster separated from that of the AM-modified starches.Extended AM treatments reduced the apparent molecular weight and the gel texture without changing the amylopectin chain length distribution. However, the gel texture was typically increased as compared to the parent starch. AM-modified HAP gels were about twice as hard as gelatin gels at identical concentration, whereas gels of pea starch were comparable to gelatin gels. Modifying Gelamyl 120 and waxy maize with AM did not change the textural properties. Branching enzyme (BE) (1,4-α-d-glucan branching enzyme; EC 2.4.1.18) from Rhodothermus obamensis was used in just one modification and in combination with AM. The combined AM/BE modification of pea starch resulted in starches with shorter amylopectin chains and pastes unable to form gel network even at concentration as high as 12.0% (w/w). The PCA model of all gel texture data gave suggestive evidence for starch structural features being important for generating a gelatin-like texture.  相似文献   

3.
The structures and physicochemical properties of acid‐thinned corn, potato, and rice starches were investigated. Corn, potato, and rice starches were hydrolyzed with 0.14 N hydrochloric acid at 50 °C until reaching a target pasting peak of 200—300 Brabender Units (BU) at 10% solids in the Brabender Visco Amylograph. After acid modification the amylose content decreased slightly and all starches retained their native crystallinity pattern. Acid primarily attacked the amorphous regions within the starch granule and both amylose and amylopectin were hydrolyzed simultaneously by acid. Acid modification decreased the longer chain fraction and increased the shorter chain fraction of corn and rice starches but increased the longer chain fraction and decreased the shorter chain fraction of potato starch, as measured by high‐performance size‐exclusion chromatography. Acid‐thinned potato starches produced much firmer gels than did acid‐thinned corn and rice starches, possibly due to potato starch's relatively higher percentage of long branch chains (degree of polymerization 13—24) in amylopectin. The short‐term development of gel structure by acid‐thinned starches was dependent on amylose content, whereas the long‐term gel strength appeared dependend on the long branch chains in amylopectin.  相似文献   

4.
The physicochemical properties of nonfish proteins were correlated with textural properties of nonfish protein gels and nonfish protein-incorporated surimi gels. Both cold and thermal hydration ability (by centrifugation) of nonfish proteins strongly correlated with compressive force (cohesiveness) of nonfish protein-incorporated surimi gel (r = 0.94 for cold; r = 0.95 for thermal). Hydrophobic amino acid groups in nonfish protein inversely correlated with compressive force (r =?0.88) and penetration force (r =?0.78) of nonfish protein-incorporated surimi gel. Thermal behavior of nonfish protein affected the gel characteristics of nonfish protein and surimi with nonfish protein-incorporated.  相似文献   

5.
Ozone-oxidised starches were prepared from the native starches isolated from white and red cocoyam, and white and yellow yam cultivars. The native and oxidised starches were evaluated for functional, thermal and molecular properties. The correlations between the amount of reacted ozone and carbonyl and carboxyl contents of the starches were positive, as ozone generation time (OGT) increased. Significant differences were obtained in terms of swelling power, solubility, pasting properties and textural properties of the native starches upon oxidation. The DSC data showed lower transition temperatures and enthalpies for retrograded gels compared to the gelatinized gels of the same starch types. The native starches showed CB-type XRD patterns while the oxidised starches resembled the CA-type pattern. As amylose content increased, amylopectin contents of the starches decreased upon oxidation. Similarly, an increase in Mw values were observed with a corresponding decrease in Mn values upon oxidation.  相似文献   

6.
A comparison between the morphological, thermal, rheological and noodle‐making properties of corn starch and potato starches separated from five different potato cultivars was made. The granule size and shape of all starches differed significantly. Potato starch granules were comparatively larger than corn starch granules, while the transition temperatures were found to be higher for corn starch. Consistency coefficients and flow behaviour indices measured by back extrusion were higher for potato starches than for corn starch. Stickiness of cooked starch pastes was observed to depend upon their consistency coefficient. The gels made from all potato starches showed higher gel strength than those from corn starch. The gel strength of starches from both corn and potato increased during refrigerated storage. The amylose content, swelling power, solubility and light transmittance values of potato starches were significantly higher than those of corn starch. Noodles made from potato starches had higher cooked weight and cooking loss than corn starch noodles. Texture profile analysis revealed that potato starch noodles also had higher hardness and cohesiveness than corn starch noodles. Hardness of cooked noodles from all starches increased and cohesiveness decreased during storage. Noodles made from starches of higher viscosity exhibited higher hardness and cohesiveness. Textural differences among cooked starch noodles appeared to be associated with morphological, thermal and rheological properties of corn starch and potato starches. © 2002 Society of Chemical Industry  相似文献   

7.
ABSTRACT:  Corn starch was converted using α-1,4-glucanotransferase from Thermotoga maritima (TmαGT), a hyperthermophilic bacterium, without inducing gelatinization, and the structural changes and physical properties of the modified starches were investigated. Enzyme modification was induced at 65 °C for 8, 16, or 24 h, and the morphology of the modified starches was observed with light and scanning electron microscopy. Granule integrity was mostly maintained after enzyme treatment, although some granules were partially fragmented as evidenced by enlarged surface pores and some cracks. The modified starches had lower apparent amylose levels than raw starch. The molecular weights of amylose and amylopectin molecules in the treated starches were lower than those of raw starch, and the amount of branched molecules, which had much lower molecular weights, also increased in the treated starches. The chain-length distribution of amylopectin showed an increased number of shorter branched chains. The modified starches showed a wider melting temperature range and a lower melting enthalpy than that of raw starch. The X-ray diffraction pattern of the modified starches showed typical A-type starch peaks, but the relative crystallinities were lower than that of raw starch. The solubility and paste clarity of the modified starches were much higher than those of raw starch. The modified starch gels maintained their rigidity over the whole frequency range tested and showed thermoreversibility between 4 and 75 °C. These results suggest that TmαGT can be used to produce granular corn starch, which contains amylose and amylopectin having lower molecular weights and a thermoreversible gelation property.  相似文献   

8.
The viscoelastic and textural properties of freshly prepared and freeze-thawed sago starch–sugar gels were studied in comparison with other native starches from corn, wheat, tapioca, and potato. The gelatinisation and retrogradation properties of starches were studied using a DSC while the pasting properties of starch–sugar mixtures during the cooking period were studied using a starch pasting cell. The freeze-thaw stability of gels was evaluated by gravimetric measurements of the water of syneresis. The different starches gave properties which varied following to their botanical sources. High-amylose cereal starches (wheat and corn) produced harder gels, while low-amylose root starch (tapioca) produced softer gels. Sago and potato gels showed close similarities in their viscoelastic and textural characteristics. Although the freeze-thaw cycle greatly increased the viscoelasticity and hardness of these two gels, reheating at high temperature significantly reduced these negative effects and resulted in partial recovery of the gel structures. Sago starch produced gels with very low syneresis and high cohesiveness, implying its potential use as a gelling agent in the frozen food industries.  相似文献   

9.
微波辐射对木薯淀粉性质影响   总被引:4,自引:0,他引:4  
研究微波辐射前后木薯淀粉物化性质变化,采用微波对30%水分含量木薯淀粉进行处理,结果表明,微波处理增强对应X–射线衍射峰强度,降低膨胀度、溶解度和冻融稳定性;木薯淀粉经处理后糊化起始温度升高、粘度降低,但其粘度曲线不改变。以上数据表明,在淀粉颗粒内无定形区和结晶区直链淀粉与直链淀粉、直链淀粉与支链淀粉发生交互作用,微波处理使淀粉分子发生一定程度降解。  相似文献   

10.
A range of three commercial starch ingredients (differing in amylose/ amylopectin ratios) were incorporated into a processed cheese formulation. The use of starch in the cheese system significantly increased the cook (final) viscosity of the cheese mixture compared to the control formulation. Starch containing high amounts of amylose produced hot cheese pastes with the highest final viscosity values. Processed cheese firmness was significantly increased with starch addition. Cheese products with high‐amylose starch recorded a five‐fold increase in firmness, whereas high amylopectin‐based starches yielded a two‐fold increase in firmness. No significant differences were observed in the adhesive and cohesive properties of the processed cheeses when starch was added to the formulation. The addition of starch to the cheese samples significantly reduced the degree of melt of the processed cheese samples compared to the control. The high‐amylose starch exhibited a minimum of a 26% reduction in the degree of melt compared to the control sample. The amount of cheese melt decreased with increased starch content.  相似文献   

11.
为了解月桂酸对小麦淀粉黏滞性和质构特性的影响,利用X-射线衍射仪、快速黏度分析仪和质构仪测定月桂酸和3种不同直链淀粉含量小麦淀粉混合体系的晶体结构、黏滞性和质构特性。结果表明:复合指数随月桂酸用量和直链淀粉含量的增加而增大;小麦淀粉的晶体结构为A-型,淀粉和月桂酸复合后出现V-型结构吸收峰,结晶度随复合指数增大而增大;月桂酸显著影响小麦淀粉的黏滞性和质构特性,使小麦淀粉的最终黏度增大,热糊黏度、硬度和咀嚼性减小。1.5%的月桂酸与小麦淀粉复合程度最大,对淀粉黏滞性和质构特性的影响最大。  相似文献   

12.
Hardness and the percentage of leaked water of sweetpotato starch gels after storage were investigated as indexes of starch retrogradation. Starches of some varieties of sweetpotato were retrograded rapidly, but those of others were not retrograded during storage for one week. After one month of storage, starches of all varieties were highly retrograded, but the varietal order of hardness and the percentage of leaked water were almost the same as that after storage for one week. The study of chain length distribution by gel permeation chromatography after debranching by isoamylase showed that the hardness and the percentage of leaked water from the gel were positively correlated with amylose content and the proportion of Fr 1, the fraction of the highest molecular weight, containing amylose and extremely long chains of amylopectin, and negatively correlated with the proportion of Fr 3, the fraction with the lowest molecular weight, containing shorter chains of amylopectin. In addition, it was demonstrated by high performance anion exchange chromatography that the proportion of extra‐short chains (around DP 10) of amylopectin after isoamylase treatment was negatively correlated with the retrogradation index of starch. These results suggest that retrogradation of sweetpotato starch was promoted by amylose and extremely long chains of amylopectin and was inhibited by extra‐short chains (around DP 10) of amylopectin.  相似文献   

13.
The fine structure of high-amylose corn starches has been studied after dispersion of the starch and fractionation into their components amylose and amylopectin. The resulting amylopectin fraction reported in the literature possesses anomalous properties with regard to the waxy and normal amylopectin. However, the experimental results obtained by different authors for determining the structure lead to controversal explanations. Therefore, using an enzymic method, which permits the direct examination of the constitutive chains of the starch, the fine structure of the amylopectin of an amylomaize starch (64% amylose) has been investigated and compared with those of waxy and normal starches. The pullulanase – debranched chains are fractionated by gel permeation and their linearity are checked under the action of β-amylase. The inner chains of the amylopectin fraction are studied after debranching of the β-limit dextrins. The results show the identity between amylopectins from waxy and normal starches. The amylopectin fraction of amylomaize has its own structure with longer inner chains than those of waxy-maize amylopectin.  相似文献   

14.
韧化处理对不同玉米淀粉理化特性的影响   总被引:3,自引:0,他引:3  
杜双奎  王华  赵佳  徐卯年 《食品科学》2012,33(17):78-81
以不同直/支链比例的普通玉米淀粉和蜡质玉米淀粉为材料,在40、50、60℃进行韧化处理,研究韧化处理对玉米淀粉理化特性的影响。结果表明:韧化处理的两种玉米淀粉颗粒形貌有较小变化。韧化处理后,两种淀粉的溶解度和膨胀度随着处理温度的升高而降低;所有韧化处理过的玉米淀粉黏度低于原淀粉,起糊温度高于原淀粉;韧化处理后淀粉的糊化温度升高,热焓变化不大。  相似文献   

15.
Physicochochemical changes in cassava starch and flour associated with fermentation were investigated and related to textural properties of its flour pastes. Cyanide and pH decreased, while crude protein, acidity, and apparent amylose content increased in the fermented products. Average starch granule diameter, solubility, and swelling power were depressed, while gelatinization enthalpy increased. Amylograph of starch showed increased peak visocity temperature, reduced peak, breakdown, and setback viscosities, while Texture Profile Analysis showed a decreased in hardness, cohesiveness, elasticity, and gumminess of the fermented flour paste. The altered textural properties were attributed to greater starch granule stability due to short amylose-like fragments formed by enzymatic hydrolysis of amylopectin.  相似文献   

16.
Mixed starches with an amylose content of 5, 10, 18, 20, 23, and 25% were prepared by blending starches isolated from waxy and non‐waxy wheat at different ratios. The dynamic viscoelasticity of mixed 30% and 40% starch gels was measured using a rheometer with parallel plate geometry. The change in storage shear modulus (G′) over time at 5 °C was measured, and the rate constant of G′ development was estimated. As the proportion of waxy starch in the mixture increased, starch gels showed lower G′ and higher frequency dependence during 48 h storage at 5 °C. Since the amylopectin of waxy starch granules was solubilized more easily in hot water than that of non‐waxy starch granules, mixed starch containing more waxy starch was more highly solubilized and formed weaker gels. G′ of 30% and 40% starch gels increased steadily during 48 h. 30% starch gel of waxy, non‐waxy and mixed starches showed a slow increase in G′. For 40% starch gels, mixed starch containing more waxy starch showed rapidly developed G′ and had a higher rate constant of starch retrogradation. Waxy starch greatly influenced the rheological properties of mixed starch gels and its proportion in the mixture played a major role in starch gel properties.  相似文献   

17.
A study of the factors that determine the gel consistency values of nonwaxy milled rice and rice starch showed that these values (in mm) were correlated negatively with the corresponding gel viscosities as measured with a Wells-Brookfield viscometer. In 6 IRRI rice varieties and an intermediate amylose variety, C 4–63 G, amylopectin contributed more to gel viscosity than did the amylose fraction of the starch. Differences in gel viscosity were observed only at starch concentration of 40 mg in 2 ml 0.2-N KOH or higher and were not simply related to differences in the intrinsic viscosity [η] of starch. However, gel consistency of starch was significantly correlated negatively with [η] of amylopectin. Gel viscosity was higher in KOH than in potassium acetate but the difference in viscosity was greater for the starch and amylopectin than for amylose.  相似文献   

18.
The starches and flours from four different rice cultivars were evaluated for composition, crystallinity characteristics, blue value, turbidity, swelling power, solubility, pasting properties, and textural and retrogradation properties. The amylose content of starches and flours from different rice cultivars differed significantly. The results showed that the physicochemical properties of rice starch and rice flour were correlated to amylose content. The crystallinity degree of rice starch and flour depended on amylose content. The blue value, turbidity value, and gel hardness were positively correlated to amylose content; however, the swelling power, solubility, and gel adhesiveness were negatively correlated to amylose content. Furthermore, the pasting properties and gel textural and retrogradation properties of rice flours were related to the structure properties of rice starch. And the characteristics of starch, protein, and lipid significantly influenced the turbidity, pasting properties, and gel textural and retrogradation properties of rice flours.  相似文献   

19.
The effect of repeated freeze–thaw (FT) cycles (up to seven) on microstructure, thermal and textural properties of four starch gels from various botanical origins (gingko, Chinese water chestnut, potato and rice) was investigated and compared by scanning electronic microscope, differential scanning calorimetry and texture analyzer. The chemical composition and molecular structure of four starches were also examined. The Chinese water chestnut, potato and rice starch gels formed a honey-comb structure after 7 FT cycles, while gingko starch gel exhibited lamellar structure. The 7 FT cycles decreased the transition temperatures and enthalpies of four starches in comparison with each native starch, and the retrogradation percentage followed the order: rice > gingko > Chinese water chestnut > potato. The 7 FT cycles increased the hardness of all the evaluated starch gels and decreased springiness and cohesiveness. Results showed that the molecular structure of starches caused notable differences to the microstructure and textural properties of starch gels. The higher amount of longer branch chain (degree of polymerization (DP) > 18) might benefit the formation of the lamellar structure of gingko starch. The percentage of branch chains (DP 18–23) was negatively related with the springiness and cohesiveness of native starch gels, while the percentage of medium chains (DP 12–17) was positively related to the springiness of starch gels after 7 FT cycles.  相似文献   

20.
High amylose corn starch (HACS) and potato starch were hydrolyzed by pancreatic α‐amylase in vitro. Residues after hydrolysis were collected and characterized for their physicochemical properties and molecular structure. Compared with raw starches, residues had lower apparent amylose contents and higher resistant starch contents. The gelatinization enthalpy of residues from HACS increased while enthalpy of residues from potato starch decreased from 15.4 to 11.3 J/g. Peak viscosity and breakdown values of the residues from potato starch were markedly decreased but final viscosity values did not show much change. Chain length distribution of debranched amylopectin from the residues indicated that the relative portion of short chain in the residue decreased for both starches. More molecules with intermediate chain length (DP 16—31) were found in residue after 48‐h hydrolysis of potato starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号