首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nck is an adaptor protein composed of a single SH2 domain and three SH3 domains. Upon growth factor stimulation, Nck is recruited to receptor tyrosine kinases via its SH2 domain, probably initiating one or more signaling cascades. In this report, we show that Nck is bound in living cells to the serine-threonine kinase Pak1. The association between Nck and Pak1 is mediated by the second SH3 domain of Nck and a proline-rich sequence in the amino terminus of Pak1. We also show that Pak1 is recruited by activated epidermal growth factor (EGF) and platelet-derived growth factor receptors. Moreover, Pak1 kinase activity is increased in response to EGF in HeLa cells transfected with human Pak1, and the kinase activity was enhanced when Nck was co-transfected. It is concluded that Nck links receptor tyrosine kinases with Pak1 and is probably involved in targeting and regulation of Pak1 activity.  相似文献   

2.
The purpose of this study was to investigate the effects of 316L stainless steel (SS) corrosion products on the in vitro biomineralization process, because tissue necrosis, bone loss, impaired bone mineralization, and loosening of orthopedic implants are associated with ions and debris resulting from biodegradation. Rat bone marrow cells were cultured in experimental conditions that favored the proliferation and differentiation of osteoblastic cells and were exposed to SS corrosion products obtained by electrochemical means for periods ranging from 1 to 21 days. Quantification of total and ionized Ca and P, as well as Fe, Cr, and Ni, ions in the culture media of control and metal added cultures during the incubation period was performed to study the influence of corrosion products on the Ca and P consumption that occurs during the mineralization process. Control cultures and metal effects on cultures were evaluated concerning DNA content, enzymatic reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity. Histochemical detection of ALP, Ca, and phosphate deposition, and examination of the cultures by scanning and transmission electron microscopy (SEM and TEM) were also performed. The presence of SS corrosion products resulted in impairment of the normal behavior of rat bone marrow cultures. Levels of Cr and Ni in the medium of cultures exposed to 316L SS corrosion products decreased throughout the incubation period, suggesting a regular deposition of these species; these results were supported by TEM observation of the cultures. Cultures exposed to the corrosion products presented lower DNA content, MTT reduction, and ALP activity and failed to form mineralized areas. These cultures showed negative staining on histochemical reactions for the identification of calcium and phosphate deposition and SEM and TEM examination did not show mineral globular structures or mineralization foci, respectively, which is characteristic of cultures grown in control conditions. These results suggest that metal ions associated with 316L SS are toxic to osteogenic cells, affecting their proliferation and differentiation.  相似文献   

3.
Cell-cell and cell-matrix adhesive interactions mediated by integrins play crucial roles in leukocyte migration to inflamed tissues, and also in cell migration during embryogenesis. Much remains to be learned about the molecular mechanisms of regulation of adhesion mediated by integrins. Recently we found that steel factor and c-kit induce adhesion to fibronectin by VLA-5 in mast cells. Activation of adhesiveness is transient, and occurs at concentrations of steel factor 100-fold lower than required for growth stimulation. This suggests that regulation of adhesion is an important biological function of steel factor and c-kit. Other receptor tyrosine kinases such as the PDGF receptor can substitute for c-kit. Signaling through receptor tyrosine kinases may offer a general mechanism for the regulation of integrin avidity.  相似文献   

4.
5.
LIM domains, Cys-rich motifs containing approximately 50 amino acids found in a variety of proteins, are proposed to direct protein*protein interactions. To identify structural targets recognized by LIM domains, we have utilized random peptide library selection, the yeast two-hybrid system, and glutathione S-transferase fusions. Enigma contains three LIM domains within its carboxyl terminus and LIM3 of Enigma specifically recognizes active but not mutant endocytic codes of the insulin receptor (InsR) (Wu, R. Y., and Gill, G. N. (1994) J. Biol. Chem. 269, 25085-25090). Interaction of two random peptide libraries with glutathione S-transferase-LIM3 of Enigma indicated specific binding to Gly-Pro-Hyd-Gly-Pro-Hyd-Tyr-Ala corresponding to the major endocytic code of InsR. Peptide competition demonstrated that both Pro and Tyr residues were required for specific interaction of InsR with Enigma. In contrast to LIM3 of Enigma binding to InsR, LIM2 of Enigma associated specifically with the receptor tyrosine kinase, Ret. Ret was specific for LIM2 of Enigma and did not bind other LIM domains tested. Mutational analysis indicated that the residues responsible for binding to Enigma were localized to the carboxyl-terminal 61 amino acids of Ret. A peptide corresponding to the carboxyl-terminal 20 amino acids of Ret dissociated Enigma and Ret complexes, while a mutant that changed Asn-Lys-Leu-Tyr in the peptide to Ala-Lys-Leu-Ala or a peptide corresponding to exon16 of InsR failed to disrupt the complexes, indicating the Asn-Lys-Leu-Tyr sequence of Ret is essential to the recognition motif for LIM2 of Enigma. We conclude that LIM domains of Enigma recognize tyrosine-containing motifs with specificity residing in both the LIM domains and in the target structures.  相似文献   

6.
The purpose of this study was to assess the value of electron beam computed tomography in the detection of cardiac calcifications in coronaries and valves of dialysis patients and to determine the rate at which calcification progresses. Forty-nine chronic hemodialysis patients aged 28 to 74 years were compared with 102 non-dialysis patients aged 32 to 73 years with documented or suspected coronary artery disease, all of whom underwent coronary angiography. We used high-resolution electron beam computed tomography scanning to make 30 axial slices with a distance of 3 mm between each slice. The number of calcifications, the surface area, and the average and highest density values were measured. We calculated a quantitative coronary artery calcium score and assessed calcification of mitral and aortic valves. In dialysis patients, the measurements were repeated after 12 months. The coronary artery calcium score was from 2.5-fold to fivefold higher in the dialysis patients than in the non-dialysis patients. Hypertensive dialysis patients had higher calcium scores than non-hypertensive dialysis patients (P < 0.05). A stepwise, multiple regression analysis confirmed the importance of age and hypertension. No correlation between calcium, phosphate, or parathyroid hormone values and the coronary calcium score was identified; however, the calcium score was inversely correlated with bone mass in the dialysis patients (r = 0.47, P < 0.05). The mitral valve was calcified in 59% of dialysis patients, while the aortic valve was calcified in 55%. The coronary artery calcium score was correlated with aortic valvular, but not mitral valvular calcification. A repeat examination of the dialysis patients at an interval of 1 year showed a disturbing tendency for progression. Our data under-score the frequency and severity of coronary and valvular calcifications in dialysis patients, and illustrate the rapid progression of this calcification. Finally, they draw attention to hypertension as an important risk factor in this process.  相似文献   

7.
The voltage-dependent potassium channel, Kv1.3, is modulated by the epidermal growth factor receptor (EGFr) and the insulin receptor tyrosine kinases. When the EGFr and Kv1.3 are coexpressed in HEK 293 cells, acute treatment of the cells with EGF during a patch recording can suppress the Kv1.3 current within tens of minutes. This effect appears to be due to tyrosine phosphorylation of the channel, as it is blocked by treatment with the tyrosine kinase inhibitor erbstatin, or by mutation of the tyrosine at channel amino acid position 479 to phenylalanine. Previous work has shown that there is a large increase in the tyrosine phosphorylation of Kv1.3 when it is coexpressed with the EGFr. Pretreatment of EGFr and Kv1.3 cotransfected cells with EGF before patch recording also results in a decrease in peak Kv1.3 current. Furthermore, pretreatment of cotransfected cells with an antibody to the EGFr ligand binding domain (alpha-EGFr), which blocks receptor dimerization and tyrosine kinase activation, blocks the EGFr-mediated suppression of Kv1.3 current. Insulin treatment during patch recording also causes an inhibition of Kv1.3 current after tens of minutes, while pretreatment for 18 h produces almost total suppression of current. In addition to depressing peak Kv1.3 current, EGF treatment produces a speeding of C-type inactivation, while pretreatment with the alpha-EGFr slows C-type inactivation. In contrast, insulin does not influence C-type inactivation kinetics. Mutational analysis indicates that the EGF-induced modulation of the inactivation rate occurs by a mechanism different from that of the EGF-induced decrease in peak current. Thus, receptor tyrosine kinases differentially modulate the current magnitude and kinetics of a voltage-dependent potassium channel.  相似文献   

8.
The early phases of T-cell development require both cell-cell interactions and soluble factors provided by stromal cells within the thymic microenvironment. Still, the precise nature of the signals delivered in vivo by cytokines (resulting in survival, proliferation or differentiation) remains unclear. Recent studies using mice deficient in cytokines or in their receptors have helped to identify essential signaling pathways required for the development of intrathymic precursors to mature alpha beta and gamma delta T cells. In addition, cytokine requirements for the development of natural killer cells were revealed in such mutants. The results obtained demonstrate that the development of all classes of lymphocytes (natural killer, gamma delta T cells and alpha beta T cells) is cytokine dependent, but the specific requirements differ for each lineage.  相似文献   

9.
This work is a sequel to and completes the review, that recently appeared in this journal, of pentatomic cyclic muscarinic agonists. It reports the results of structure-activity relationship (SAR) studies of pentatomic cyclic antagonists on muscarinic receptors and compares these results with some recent advances in molecular biology and quantitative structure-activity relationship (QSAR) studies.  相似文献   

10.
Engagement of immunoreceptors in hemopoietic cells leads to activation of Src family tyrosine kinases as well as Syk or ZAP-70. Current models propose that Src family kinases are critical in immune response signal transduction through their role in phosphorylation of tyrosine residues within immunoreceptor tyrosine activation motifs (ITAMs; which recruit the SH2 domains of Syk or ZAP-70) and by direct phosphorylation of Syk and ZAP-70. Several lines of evidence suggest that Syk may not show the same dependence on activation by Src family kinases as ZAP-70. In this report, we used COS cells transiently transfected with components of the Fc epsilon RI complex (Lyn, Syk, and a chimeric CD8 receptor containing the cytoplasmic domain of the gamma subunit of Fc epsilon RI (CD8-gamma)) to examine the regulation of Syk activity. Syk was activated and phosphorylated in COS cells cotransfected with Lyn; however, in cells expressing CD8-gamma, activation of Syk and phosphorylation of CD8-gamma did not require coexpression of Lyn. Additional experiments indicate that gamma phosphorylation is dependent on Syk kinase activity and is independent of endogenous COS cell kinases. In parallel experiments, ZAP-70 was not activated by cotransfection with CD8-gamma, nor was CD8-gamma phosphorylated when coexpressed with ZAP-70 alone. Taken together, these studies indicate that Syk can be distinguished from ZAP-70 in its ability to be activated by coexpression with an ITAM-containing receptor without coexpression of a Src family kinase, and that Syk is capable of phosphorylating ITAM tyrosines under certain experimental conditions.  相似文献   

11.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. The ionotropic glutamate receptors are classified into two groups, NMDA (N-methyl-D-aspartate) receptors and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors. The AMPA receptor is a ligand-gated cation channel that mediates the fast component of excitatory postsynaptic currents in the central nervous system. Here we report that AMPA receptors function not only as ion channels but also as cell-surface signal transducers by means of their interaction with the Src-family non-receptor protein tyrosine kinase Lyn. In the cerebellum, Lyn is physically associated with the AMPA receptor and is rapidly activated following stimulation of the receptor. Activation of Lyn is independent of Ca2+ and Na+ influx through AMPA receptors. As a result of activation of Lyn, the mitogen-activated protein kinase (MAPK) signalling pathway is activated, and the expression of brain-derived neurotrophic factor (BDNF) messenger RNA is increased in a Lyn-kinase-dependent manner. Thus, AMPA receptors generate intracellular signals from the cell surface to the nucleus through the Lyn-MAPK pathway, which may contribute to synaptic plasticity by regulating the expression of BDNF.  相似文献   

12.
Recent studies have implicated Eph-related receptor tyrosine kinases and their membrane-bound ligands in restricting or stimulating the movement of cells and axons. Members of these large families of receptors and ligands fall into two major binding specificity classes, in which the GPI-anchored subgroup of ligands can each bind to all members of a subgroup of receptors, whereas the transmembrane ligands interact with a distinct subgroup of receptors. Analysis of expression patterns is therefore important in order to understand which receptor-ligand interactions occur in vivo. We have cloned mouse orthologues of five members of the ligand family and analysed in detail their developmental expression, in comparison with each other, and with the receptor specificity class they can interact with. We find that B61, AL-1/RAGS, LERK4, and ELF-1, members of the GPI-anchored subgroup of ligands, have both distinct and overlapping aspects to their expression in early mesoderm, somites, and branchial arches; in complex, dynamic patterns in the limb; and in spatial domains and specific neurons in the CNS. Similarly, Elk-L is expressed in hindbrain segments, the roof plate, and floor plate, which overlaps with that of other transmembrane ligands, but has distinct expression in somites. The expression domains of ligands are complementary to those of the corresponding receptors in a number of tissues, including the midbrain, hindbrain, and differentiating limbs, consistent with potential roles in restricting cell movement. In addition, we find that there are some overlaps in expression of receptors and ligands, for example in somites and the early limb. Taken together with previous studies showing that Eph-related receptors also have distinct but overlapping expression patterns, these data indicate that each ligand may have stage- and tissue-specific interactions with an individual member or multiple members of the receptor family.  相似文献   

13.
BACKGROUND: During vertebrate head development, neural crest cells migrate from hindbrain segments to specific branchial arches, where they differentiate into distinct patterns of skeletal structures. The rostrocaudal identity of branchial neural crest cells appears to be specified prior to migration, so it is important that they are targeted to the correct destination. In Xenopus embryos, branchial neural crest cells segregate into four streams that are adjacent during early stages of migration. It is not known what restricts the intermingling of these migrating cell populations and targets them to specific branchial arches. Here, we investigated the role of Eph receptors and ephrins-mediators of cell-contact-dependent interactions that have been implicated in neuronal pathfinding-in this targeted migration. RESULTS: Xenopus EphA4 and EphB1 are expressed in migrating neural crest cells and mesoderm of the third arch, and third plus fourth arches, respectively. The ephrin-B2 ligand, which interacts with these receptors, is expressed in the adjacent second arch neural crest and mesoderm. Using truncated receptors, we show that the inhibition of EphA4/EphB1 function leads to abnormal migration of third arch neural crest cells into second and fourth arch territories. Furthermore, ectopic activation of these receptors by overexpression of ephrin-B2 leads to scattering of third arch neural crest cells into adjacent regions. Similar disruptions occur when the expression of ephrin-B2 or truncated receptors is targeted to the neural crest. CONCLUSIONS: These data indicate that the complementary expression of EphA4/EphB1 receptors and ephrin-B2 is involved in restricting the intermingling of third and second arch neural crest and in targeting third arch neural crest to the correct destination. Together with previous work showing that Eph receptors and ligands mediate neuronal growth cone repulsion, our findings suggest that similar mechanisms are used for neural crest and axon pathfinding.  相似文献   

14.
Two highly related receptor tyrosine kinases, TIE and TEK, comprise a family of endothelial cell-specific kinase. We established monoclonal antibodies against them and performed detailed analyses on their expression and function in murine hematopoietic stem cells (HSCs). TIE and TEK were expressed on 23.7% and 33.3% of lineage marker-negative, c-Kit+ and Sca-1+ (Lin- c-Kit+ Sca-1+) HSCs that contain the majority of day-12 colony-forming units-spleen (CFU-S) and long-term reconstituting cells, but not committed progenitor cells. Lin- c-Kit+ Sca-1+ cells were further divided by the expression of TIE and TEK. TIE+ and TEK+ HSCs as well as each negative counterpart contained high proliferative potential colony-forming cells and differentiated into lymphoid and myeloid progenies both in vitro and in vivo. However, day-12 CFU-S were enriched in TIE+ and TEK+ HSCs. Our findings define TIE and TEK as novel stem cell marker antigens that segregate day-12 CFU-S, and provide evidence of novel signaling pathways that are involved in the functional regulation of HSCs at a specific stage of differentiation, particularly of day-12 CFU-S.  相似文献   

15.
Growth factor receptor tyrosine kinase (RTK)-activated signaling pathways are well established regulators of neuronal growth and development, but whether these signals provide mechanisms for acute modulation of neuronal activity is just beginning to be addressed. We show in pheochromocytoma (PC12) cells that acute application of ligands for both endogenous RTKs [trkA, basic FGF (bFGF) receptor, and epidermal growth factor (EGF) receptor] and ectopically expressed platelet-derived growth factor (PDGF) receptors rapidly inhibits whole-cell sodium channel currents, coincident with a hyperpolarizing shift in the voltage dependence of inactivation. Sodium channel inhibition by trkA and PDGF receptors is mutually occlusive, suggestive of a common signal transduction mechanism. Furthermore, specific inhibitors for trkA and PDGF RTK activities abrogate sodium channel inhibition in response to NGF and PDGF, respectively, showing that the intrinsic RTK activity of these receptors is necessary for sodium channel inhibition. Use of PDGF receptor mutants deficient for specific signaling activities demonstrated that this inhibition is dependent on RTK interaction with Src but not with other RTK-associated signaling molecules. Inhibition was also compromised in cells expressing dominant-negative Ras. These results suggest a possible mechanism for acute physiological actions of RTKs, and they indicate regulatory functions for Ras and Src that may complement the roles of these signaling proteins in long-term neuronal regulation.  相似文献   

16.
The inhibition of tyrosine kinases involved in growth factor signal transduction pathways represents an attractive strategy for controlling aberrant cellular growth. Over the last 4-5 years, there have been numerous reports on the discovery of small molecule inhibitors for potential therapeutic applications to a number of proliferative diseases, principally cancer and restenosis, where the over-expression of certain tyrosine kinases has been demonstrated. These include, amongst others, the platelet-derived growth factor receptor, the fibroblast growth factor receptor, and the nonreceptor c-Src tyrosine kinase. This review compiles published reports and patent filings from 1995 to mid-1997 that include data directly related to inhibition of the platelet-derived growth factor receptor, fibroblast growth factor receptor, and Src family tyrosine kinases. Potential clinical applications for selected classes of tyrosine kinase inhibitors reviewed herein will likely depend on the demonstration of meaningful activity in a variety of therapeutic targets in animal models.  相似文献   

17.
Nerve growth cone guidance is a highly complex feat, involving coordination of cell adhesion molecules, trophic factor gradients, and extracellular matrix proteins. While navigating through the developing nervous system, the growth cone must integrate diverse environmental signals into a singular response. The repertoire of growth cone responses to these extracellular cues includes axonal growth, fasciculation, and synaptic stabilization, which are achieved through dynamic changes in the cytoskeleton and modulation of gene expression. It has become evident that interactions between cell adhesion molecules can activate intracellular signaling pathways in neurons. Such signaling pathways are just beginning to be defined for the axonal growth promoting molecules L1 and NCAM which are members of the immunoglobulin (Ig) superfamily. Recent findings have revealed that L1 and NCAM induce neurite outgrowth by activating intracellular signaling pathways in the growth cone mediated by two different members of the src family of nonreceptor protein tyrosine kinases (PTKs), pp60(c-src) and p59(fyn5,6). Growth cones display diverse morphologies and variable motility on these different cell adhesion molecules, which are likely to be generated by src kinases. In this review we will address novel features of nonreceptor PTKs of the src family which dictate their distinctive molecular interactions with cell adhesion molecules and signaling components.  相似文献   

18.
Human basophils activated through high-affinity immunoglobulin E (IgE) receptors (Fc epsilon RI) are involved in the late phase of the allergic reaction. To investigate the possible involvement of protein-tyrosine kinases in this activation we used human acute basophilic leukemia (ABL) cells in culture as well as a pure population of normal basophils in vitro-derived from human bone marrow precursor cells (HBMB). ABL cells were 50-80% basophils at various stages of maturation as assessed by staining, morphology, ultrastructure, and flow cytometry analysis, and only basophils in ABL cells expressed Fc epsilon RI. Aggregation of Fc epsilon RI by IgE and anti-IgE, IgE and antigen, or anti-Fc epsilon RI monoclonal antibodies on ABL cells or on HBMB, led to increased tyrosine phosphorylation of 120-, 100-, 80-, 72-, 50- to 65-, and 38-kDa substrates. Tyrosine phosphorylations in ABL cells were in basophils because 1) they were detected after a 5-s stimulation, 2) they were observed under conditions where mediator release is minimal, i.e., in the absence of extracellular calcium, 3) hapten addition during antigen stimulation resulted in almost total disappearance of tyrosine phosphorylations within 30 s. There was correlation between histamine release and tyrosine phosphorylation in anti-IgE dose-responses and in dose-responses of the tyrosine kinase inhibitor genistein. The tyrosine kinase p72syk was detected in the cells. Stimulation of ABL cells for 1 min resulted in extracellular calcium-independent tyrosine phosphorylation and activation of p72syk. Therefore, tyrosine kinases are involved in the early steps of human Fc epsilon RI signaling in basophils. Tyrosine kinases and their substrates could represent new potential therapeutic targets to prevent the development of the allergic reaction.  相似文献   

19.
Recent data suggest that signal transduction may have a critical role in the development and regulation of the metastatic phenotype. Here, we investigated the role of c-Src activation in the process of human colon cancer metastasis to the liver. Our data, derived from two different sets of human colon cancer cell line metastatic variants, suggest that not only do highly-metastatic cells display constitutively elevated c-Src protein kinase activity when compared to poorly metastatic cells, but also that receptor tyrosine kinases participate in the ligand-activation of c-Src above basal levels. Specifically, the epidermal growth factor receptor (EGFR), p185HER2/Neu and the hepatocyte growth factor receptor (c-Met) appear to be linked to the process because they preferentially activate c-Src in highly-metastatic cells. EGFR was found to associate with c-Src in colon cancer cells and specific inhibitors of the EGFR resulted in a reduction of c-Src activity to basal levels. In addition, c-Src transfectants displayed partially-activated EGFRs, suggesting a feedback role for c-Src in the regulation of the EGFR. p185HER2/Neu was also identified in immunocomplexes of c-Src following ligand activation of the EGFR, but only in highly-metastatic cells. Collectively, these observations suggest a paradigm whereby c-Src interacts with multiple cell-surface growth factors in a catalytic fashion for the development of tumor cells with metastatic potential.  相似文献   

20.
Cross-linking of the T cell antigen receptor (TCR)-CD3 complex induces rapid tyrosine phosphorylation and activation of Src (Lck and Fyn) and Syk (Syk and Zap-70) family protein tyrosine kinases (PTKs) which, in turn, phosphorylate multiple intracellular substrates. Cbl is a prominent PTK substrate suggesting a pivotal role for it in early signal transduction events. However, the regulation of Cbl function and tyrosine phosphorylation in T cells by upstream PTKs remains poorly understood. In the present study, we used genetic and biochemical approaches to demonstrate that Cbl directly interacts with Syk and Fyn via its N-terminal and C-terminal regions, respectively. Tyr-316 of Syk was required for the interaction with Cbl as well as for the maximal tyrosine phosphorylation of Cbl. However, both wild-type Syk and Y316F-mutated Syk phosphorylated equally well the C-terminal fragment of Cbl in vivo, suggesting the existence of an alternative, N terminus-independent mechanism for the Syk-induced tyrosine phosphorylation of Cbl. This mechanism appears to involve Fyn, since, in addition to its association with the C-terminal region of Cbl, Fyn also associated with Syk and enhanced the Syk-induced tyrosine phosphorylation of Cbl. These findings implicate Fyn as an adaptor protein that facilitates the interaction between Syk and Cbl, and suggest that Src and Syk family PTKs coordinately regulate the tyrosine phosphorylation of Cbl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号