首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
硼粉在冲压发动机补燃室中可燃性研究   总被引:3,自引:0,他引:3  
庞爱民  郑剑  肖金武 《含能材料》2004,12(Z1):379-383
在综述国内外有关硼粉点火和燃烧研究成果的基础上,分析了硼粉点烧的条件,归纳总结了改善硼粉燃烧的技术途径,并结合冲压发动机补燃室的特性,探讨了硼粉在补燃室中燃烧的可能性,提出了确保硼粉可燃的技术措施.试验表明采用的技术途径和手段有效,显著改善了硼粉的点火性能和燃烧效率,验证了理论分析结果.  相似文献   

2.
为了解决固体火箭冲压发动机补燃室长时间热防护问题.展开了补燃室梯度热防护系统研究,建立了梯度隔热的热防护方案,计算了各项热流密度。计算考虑以下传热过程:燃气通过辐射、对流的方式将热量传给硬质层,硬质层通过热传导的形式传给柔性梯度隔热层、壳体.最后以自由对流和辐射换热的方式将热量传递给周围空气和环境。分析了各隔热层厚度分配对于壁面温度的影响,设计了梯度隔热燃烧室,并进行了直连式试验,测试结果满足发动机总体要求。试验和计算结果证明梯度隔热方案满足热防护要求。  相似文献   

3.
自七十年代以来人们使用实验和CFD手段对固体火箭冲压发动机补燃室流场进行了不断的分析研究。本文简要介绍了实验概况和数值模拟所用的物理模型和计算方法,最后提及新近发展的耦合解法-块隐式法。  相似文献   

4.
亚燃/超燃冲压发动机研制动向   总被引:1,自引:0,他引:1  
冲压发动机是导弹和无人驾驶飞行器的动力装置,拥有导弹工业的大多数国家和地区目前都在研究亚燃/超燃冲压发动机技术,研究涉及燃烧、点火、推进剂、进气道结构等多方面。介绍了有关国家和地区冲压发动机在研状况和研制动向。  相似文献   

5.
本文提出了用于研究冲压发动机燃烧室的混合和燃烧特性以及冲压-火箭发动机,冲压火箭发动机特性的一维、二维计算法和水洞试验法。这些方法是结合发动机典型使用范围介绍的。计算结果给出了不同推进系统的性能特点。  相似文献   

6.
火箭冲压组合发动机的燃烧控制   总被引:1,自引:0,他引:1  
目前空天飞行器用的火箭冲压组合发动机尚有很多技术问题没有解决。其中之一是吸入发动机的空气密度随飞行高度有很大变化,为此必须改变推进剂的燃气发生量,即必须有控制空气与燃烧气体混合比的技术。为此探讨了利用推进剂的化学反应特性控制火箭冲压组合发动机燃烧的新原理。根据这一原理提出了变流量型火箭冲压组合发动机,它采用一种能使空气与燃气保持最佳比的机构,从而保证发动机在较宽的高度范围内有效工作。  相似文献   

7.
冲压火箭发动机具有比冲可达9.8kN·S/kg的性能已引起世人的关注。论述了冲压火箭的功能与特性,探讨了有关冲压火箭的流量控制、燃气发生器的燃烧特性、二次燃烧室的燃烧特性。介绍了燃烧试验方法及其结果,提出了开发冲压火箭的技术课题及今后的发展动向。  相似文献   

8.
固体火箭冲压发动机补燃室内硼颗粒点火计算研究   总被引:6,自引:3,他引:3       下载免费PDF全文
采用King硼颗粒点火模型,研究固体火箭冲压发动机补燃室内温度、压强、氧气摩尔浓度、硼颗粒初始半径对硼颗粒点火的影响。计算结果表明:当颗粒初始条件确定后,存在一个颗粒点火所需的最低环境温度;当氧气摩尔分数比较低时,增加环境总压,颗粒点火时问增加;当氧气摩尔分数比较高时,增加环境总压,颗粒点火时间反而减少;增大颗粒半径后,颗粒点火时间也增加;当环境温度升高时,颗粒点火时间显著减少。  相似文献   

9.
文中采用标准κ-ε双方程湍流模型数值模拟一种环向进气的固体火箭冲压发动机补燃室的掺混燃烧过程.考虑了补燃室的出口反压、空燃比和燃气喷射角度等设计参数对燃烧流场的影响.结果表明:增大出口反压和空燃比.有利于补燃室内掺混和燃烧的进行;增大燃气喷射角度.补燃室头部温度升高,燃料停留时间增大,对燃烧流场特性影响不大。  相似文献   

10.
主要介绍能够确定和优化满足试验模型任务要求的进气道的气动试验和方法。按约1/3的比例研制了能实现多种变化的模型,以便进行速度范围为Ma=1.8~2.2的S2超音速风洞试验。在S4高超音速风洞对真实空气进气道按零高度飞行的实际环境进行了综合试验。给出了模型吹风的比例效应。对得到的结果与1976年首次弹道飞行时取得的结果进行了比较。  相似文献   

11.
超音速进气道设计、试验、系统匹配和制造技术的开发是此项研究工作的基础之一。试验设备现已交付使用。对单个进气道和配置进气道的测试能力进行了充分的研究。研究了一种带放气口的进气道方案,并可用于整体式火箭冲压发动机飞行试验导弹。研究工作涉及进气道设计过程、风洞性能试验、系统匹配、制造、飞行试验数据采集和分析。目前,重点放在研究工作上,致力于各姿态角和超额定马赫数下性能的研究。  相似文献   

12.
文中利用数值模拟研究了不同来流条件下固体火箭超燃冲压发动机的燃烧特性.采用基于密度的二阶迎风格式对发动机内流场进行模拟,湍流模型与燃烧模型分别采用SST k-ω模型与涡团耗散模型.结果表明,随来流马赫数的增大,火焰温度与最大化学反应速率均增大;燃烧效率随来流马赫数的增大而减小,且燃烧效率低于50%;燃烧效率的减小导致补燃室的推力与比冲下降.随来流马赫数的变化,应适当调节富燃燃气流量,以保证发动机的燃烧性能.  相似文献   

13.
探讨了吸气式火箭发动机的飞行特性。用一维模型分析了进气道的气流,根据飞行速度/高度、空气流量和燃料流量等计算了发动机推力,根据计算的推力与空气阻力的关系,探讨了可以加速飞行器的富余推力。结果证明,与原来的固体火箭发动机相比,这种发动机通过对飞行航线的选择和燃料流量的控制可使地空导弹的飞行距离增加7倍,空空导弹的飞行距离增加1~2倍。  相似文献   

14.
实验证明冲压火箭发动机的飞行性能不仅与固体燃气发生器的燃烧性能有关, 而且与吸入空气流量有很大关系, 因此其性能最终取决于飞行速度与高度。以燃料的燃气流量与空气的混合比为参数, 求出了喷管截面积与进气口截面积的关系。明确了增加射程的条件与飞行速度的关系随飞行高度而变化  相似文献   

15.
回顾了超燃冲压发动机燃烧室先进的燃料喷射和混合技术。燃料喷射方法包括燃烧室的单孔直流式喷射、与气流方向平行的缝隙式喷射以及支杆和斜坡后燃料喷射。提出了三种新的混合技术,第一种是弯曲的燃烧室产生的浮力将使燃料布满整个燃烧室;第二种是燃料脉动式喷射;第三种是支析后喷射以使燃料深深地穿透气流中去。这些新的混合技术将会提高超燃冲压发动机的性能。  相似文献   

16.
固体火箭超燃冲压发动机性能数值模拟研究   总被引:3,自引:0,他引:3  
针对固体火箭超燃冲压发动机,设计了多级小角度扩张的超燃冲压发动机燃烧室结构,采用凹腔和扰流装置两种混合增强及火焰稳定方式,通过包含简化动力学的数值模拟方法,研究了不同构型燃烧室掺混燃烧性能。结果表明,燃烧室扩张角度对燃烧效率的提高有影响,但作用效果有限;凹腔结构虽然促进了燃烧反应的进行,有利于提高燃烧效率,同时也带来了较大的内部阻力;扰流装置较大的提高了一次燃气与来流空气间的掺混度,对于燃烧效率的提高意义明显。  相似文献   

17.
为了研究管道火箭(燃气发生器冲压发动机)燃烧室的燃烧现象,美国海军空战中心武器分部(NAWCWPNS)和荷兰应用科学研究协会普林斯毛里塔斯(TNOPrinsMaurits)实验室联合制定了试验研究计划。其主要目的是研究这些燃料喷入冲压燃烧室的方法对燃烧性能的影响。特别是研究了低温(约1220K)下燃气发生器燃料的燃烧。采用多级喷管获得了最好的燃烧效率,从而出现了高度小紊流度以改善喷流点火/补燃。这种成果是用NAWCWPNS的气体燃料和荷兰的含能推进剂而得到的。  相似文献   

18.
为阐明液体冲压发动机的推力特性,对这种发动机的理论燃烧性能进行了研究,并与火箭冲压组合发动机进行了比较。在相同的燃料流量下,液体冲压发动机的比冲约为火箭冲压组合发动机的2倍。尤其使用JP-10等高密度燃料时,密度比冲也显示出优越性能。但研究发现,液体冲压发动机的燃烧效率和喷管流动效率受自大气中引入的空气流量影响较大。为取得较高的比冲,液体冲压发动机的空气流量远大于火箭冲压组合发动机的,进气口的性能对发动机性能的影响很大。为探讨液体冲压发动机的燃烧性能,试制了燃烧室内径为150mm的小型液体冲压发动机,进行了直连式燃烧试验。试制发动机在空燃比为50~140范围内稳定点火、燃烧,用C表征的燃烧效率达到90%以上。  相似文献   

19.
在火箭冲压发动机的吸气燃烧室内,硼粒子燃烧所产生的试验性研究问题现试图通过改进喷射装置和燃烧室设计加以解决。在这项研究过程中,硼粒子是由装填有含硼量较高的固体燃料的单独燃气发生器进行喷射。最高的燃烧效率是靠采用撞击式喷流喷射装置上加可移动的空气进口而获得,这种空气进口证明了在火箭冲压发动机内使用高硼量固体燃料的可能性。  相似文献   

20.
介绍了无喷管固体火箭发动机性能计算的基本架设、控制方程和装药燃速的处理,对影响无喷管助推器性能设计的火箭冲压发动机主要要求、影响进行了分析,围绕装药长度、冲压喷管尺寸、推力要求等设计约束条件对无喷管助推器设计的影响进行了分析与计算,给出定量计算结果和研究结论.同时,介绍了一种提高火箭;中压发动机无喷管助推器性能的新方法、新方案:冲压喷管共用结构方案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号