首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi_(0.5)Sb_(1.5)Te_3/Cu core/shell powders were prepared by electroless plating and hydrogen reduction, and then sintered into bulk by spark plasma sintering. After electroless plating, with increasing the Cu content, the electrical conductivity keeps enhancing significantly. The highest electrical conductivity reaches 3341 S/cm at room temperature in Bi_(0.5)Sb_(1.5)Te_3 with 0.67 wt% Cu bulk sample. Moreover, the lowest lattice thermal conductivity reaches 0.32 W/m·K at 572.2 K in Bi_(0.5)Sb_(1.5)Te_3 with 0.67 wt% Cu bulk sample, which is caused by the scattering of the rich-copper particles with different dimensions and massive grain boundaries. According to the results, the ZT values of all Bi_(0.5)Sb_(1.5)Te_3/Cu bulk samples have improved in a high temperature range. In Bi_(0.5)Sb_(1.5)Te_3 with 0.15 wt% Cu bulk sample, the highest ZT value at 573.4 K is 0.81. When the Cu content increases to 0.67 wt%, the highest ZT value reaches 0.85 at 622.2 K. Meanwhile, the microhardness increases with increasing the Cu content.  相似文献   

2.
热电材料可直接在电能与热能之间直接转换,其在室温附近的应用广受关注。材料性能可由与效率正相关的热电优值ZT衡量。高ZT值热电材料需同时具有较低的晶格热导率、恰当的载流子浓度、合适的能带结构和理想的微观组织。本文综述了Bi_2Te_3系、α-MgAgSb以及half-Heusler合金等几种高ZT值室温热电材料的最新研究进展,并就未来研究做出展望。Bi_2Te_3基材料是目前为止研究最为广泛的室温热电材料。Bi_2Te_3空间群为R3m,在c轴方向形成以共价结合的Te-Bi-Te-Bi-Te为重叠单元的层状结构,单元与单元之间以范德华力结合。这一晶体结构使得该材料禁带宽度为0.15 eV,价带顶或导带底为6重能谷,从而同时具备了较高的电导率和Seebeck系数。也由于该材料中包含了重元素和弱键合,其晶格热导率比较低。因此,以Bi_2Te_3为基础形成了性能较好的p型(Bi_2Te_3)-(Sb_2Te_3)和n型(Bi_2Te_3)-(Bi_2Se_3)赝二元体系。p型Bi_2Te_3基材料方面,受超晶格材料极低热导率(~0.22 Wm~(-1)K~(-1))的启发,任志锋和陈刚联合课题组率先用简单的球磨加快速热压工艺在p型Bi_(0.4)Sb_(1.6)Te_3块体材料中获得了5~50 nm的晶粒,增强了声子散射,降低了晶格热导率,使ZT峰值达到了1.4。自此以后,多种引入纳米复合物以增强声子散射的研究得以开展。2015年,韩国Kim课题组甚至将Bi_(0.5)Sb_(1.5)Te_3晶格热导率降低到了0.33 Wm~(-1)K~(-1),使该材料ZT峰值达到1.86,遗憾的是该结果未能被其他课题组重复。最近有研究表明,这一优异性能并非来源于Kim课题组所称的对中频声子的有效散射,而是忽略了各向异性导致的。另一个有趣的现象是性能优越的p型(Bi_(1-x)Sb_x)_2Te_3材料通常在x=0.75附近出现。以前曾有人认为这是由于此时价带平坦化后有效质量增加的原因,但G.J.Snyder等认为这是由于x=0.75时,第一价带与第二价带重叠,从而增加了参与输运的能带数量输运导致的。数据表明,这一模型与实验结果更吻合。相对于Bi_2Te_3基p型(Bi_2Te_3)-(Sb2Te3)材料,n型(Bi_2Te_3)-(Bi2Se3)材料则性能略低(ZT~1.2)。这主要是因为:该类p型材料可通过调控晶格缺陷来调控载流子浓度,而n型则通常只能通过掺杂来调控;p型材料在Bi/Sb为0.5/1.5时声子散射最强烈,同时还发生能带聚集;p型材料中电导与热导各向同向,而n型则各向异性,使得组织结构纳米化对降低n型材料热导率效果甚微。α-MgAgSb是2014年才进入人们视野的高性能室温热电材料,具有四方晶系结构,兼具低晶格热导率和高功率因子,因而峰值ZT达到1.4。近年来,对该材料结构的深入研究揭示了其晶格热导率低的原因:晶胞体积大、Ag-Sb间的弱键合、高密度Ag空位、Ag~+和Mg~(2+)的迁移引起的横声子模软化、U过程中强烈的非谐作用(大Grüneisen因子)、宽频声子散射等。独特的晶体结构决定了α-MgAgSb独特的能带结构。价带顶附近,其聚集能谷数为8,而导带底附近则为1,因而,仅p型α-MgAgSb热电优值较高。对该材料,通过掺杂提高载流子浓度以优化功率因子是必要的手段。在众多掺杂元素中,Li掺杂效果最好,可使载流子浓度和功率因子分别达到~1.2×1020cm~(-3)和~24μW cm~(-1)K~(-2)。由于其优异的性能和与Ag电极之间的低接触电阻,单臂p型α-MgAgSb器件拥有目前为止室温附近最高的热能-电能测试效率8.5%。Half-Heusler是另一类在热电发电领域极具前景的材料,除了具有较高的热电性能外,该材料稳定性和机械性能还异常好。最近的研究表明,常规材料中占主导作用的电子-声子耦合在该材料中被大幅度抑制是其高功率因子的起源;p型ZrCoSb和n型ZrNiSn功率因子分别可达~30和~50μW cm~(-1)K~(-2),而p型Nb_(0.95)M_(0.05)FeSb(M=Ti,Hf,Zr)更是高达100μW cm~(-1)K~(-2)。然而,由于该类材料热导率很高,使得其室温ZT仅0.3左右。尽管室温热电材料研究取得了明显的进展,但仍需在以下方面进行攻关:降低n型Bi_2Te_3基热电材料热导率使其ZT值可与p型同系材料匹配;寻找可在机械性能、热电性能上与p型α-MgAgSb匹配的n型MgAgSb或类似材料;降低NbF eS b基材料热导率及寻找其n型配对材料。  相似文献   

3.
采用高温熔炼、高能球磨、冷压成型和气氛保护烧结工艺制备了块体热电材料,研究了熔体冷却速度对In_(0.01)Bi_(1.99)Te_(2.7)Se_(0.3)热电材料显微组织与热电性能的影响.利用XRD、EDS、SEM、DSC、热电测试仪、激光热导仪等测试了热电材料的物相、晶粒大小、元素组成和含量、表面形貌和塞贝克系数、电导率、热导率.结果表明:冷却速度对物相无影响,热电材料物相均为Bi_2Te_(2.7)Se_(0.3)相;冷却速度越快,成分越均匀、晶粒越细;液氮冷却的热电材料室温(300K)塞贝克系数增大到173μV/K、电导率为4.85×104S/m、热导率减小至0.701 W·m-1·K-1,热电优值达到0.62.  相似文献   

4.
采用自制高气压热处理系统在不同的压力和时间下,以高压氢气或氮气烧结的方法制备Bi_2Te_3块体。晶格和形貌的表征及热电性能测试结果表明:Bi_2Te_3块体在高压40MPa、H_2氛围下烧结后发生P-N型转变;由于H原子进入Bi_2Te_3晶胞或晶胞间隙,增加声子散射,降低热导率;样品Bi_2Te_3在高压40MPa、N_2氛围烧结后,电导率最大达到1265S/cm;样品Bi_2Te_3在高压65MPa、N_2氛围烧结后,室温下热电优值最大提高到0.6;高压氢气/氮气烧结是提高Bi_2Te_3块体热电性能的有效方法。  相似文献   

5.
Bi_2Sr_2Co_2O_y是一种性能优异的层状钴酸盐热电材料,改变材料层与层间错配度可以提高材料的电导率、降低热导率,优化材料的热电性能。本文采用固相反应法合成并制备Bi_2Sr_2Co_2O_y(M=Ca,Ba;x=0,0.05,0.1,0.15,0.2,0.25)样品,通过XRD、SEM等表征样品的物相结构、微观组织。结果表明:Ba和Ca进入晶格,随着Ba和Ca掺杂量的增加,样品的热导率和电阻率与未掺杂的相比明显降低,材料的ZT值显著提升,当掺杂量x=0.2时,Bi_2Sr_2Co_2O_y和Bi_2Sr_2Co_2O_y样品的ZT值最高,在973 K分别达到0.22和0.41,Bi2Sr2Co2Oy热电性能显著改善。  相似文献   

6.
通过粉末烧结、高能球磨和直流快速热压相结合的工艺制备高熔点half-Heusler合金TaCoSb,热电性能测试结果表明TaCoSb是一种n型热电材料,电导率、热导率、塞贝克系数、ZT值在973 K时分别为0.58×105 S·m-1、3.8 W·m-1 K-1、-110 μV· K-1、0.18。此外,本文还研究了Sb位进行Sn掺杂对TaCoSb热电性能的影响,实验结果发现:Sn掺杂使得样品的热导率和电导率同时下降,塞贝克系数略微增加,功率因子有所降低,最终材料的ZT值未见明显提升;鉴于TaCoSb的室温电导率较低,应该往Sb右侧方向掺杂改性。  相似文献   

7.
采用高能球磨制粉、直流热压成型的方法制备Sn掺杂Bi0.5Sb1.5Te3合金的块材试样(Bi0.5Sb1.5)1-xSnxTe3 (x=0, 0.25%, 0.5%, 1%), 对试样的物相、微观结构和热电性能进行分析。X线衍射图谱表明所有样品的物相均为Bi0.5Sb1.5Te3, Sn掺杂后没有出现第二相。扫描电镜图像表明Sn掺杂对晶粒尺寸的影响不大, 因而晶格热导率变化不大。通过Sn的掺杂, 试样在提高电导率的同时降低了塞贝克系数, 这主要是由于Sn掺杂对载流子浓度的影响。试样Bi0.5Sb1.5Te3的量纲一热电优值ZT在348 K达到1.16, 在423 K之前均大于1, 比传统方法制备的BiSbTe合金的ZT平均值提高了20%, 这有利于热电的实际应用。  相似文献   

8.
通过纳米结构或声子工程降低热导率是改善PbS热电材料性能的重要途径。利用水热法制备Pb_(1-x)Bi_xS纳米热电材料,并对其热导率进行测试。结果表明,制备的纳米PbS的热导率比文献中PbS的热导率低10%左右。随着掺入Bi元素的增加,增加了晶体内部缺陷, Pb_(0.9)Bi_(0.1)S样品的热导率比PbS单体的热导率降低了33%。  相似文献   

9.
Co Sb3基方钴矿化合物具有优良的电输运性能,是一种极具潜力的新型中温热电材料,但其相对较高的热导率限制了它在热电方面的应用和发展。针对方钴矿化合物特殊的笼状晶体结构,本文采用高温高压合成方法制备了具有Skutterudite结构的Ti掺杂Te置换型方钴矿热电材料,利用X射线衍射以及扫描电镜对该类样品的晶体结构和断面微观形貌进行了分析。分析结果表明高温高压合成方法可以快速的制备出单相Skutterudite结构、晶界明显且晶粒较小(1~3μm)的方钴矿热电材料。研究了室温情况下合成压力与Ti原子的掺杂浓度对所得样品热学与电学输运性能的影响规律。所得结果表明:通过高压快速制得的Ti掺杂Te置换型样品呈n型传导,与预期相同,Ti掺杂Te置换型Co Sb3样品的Seebeck系数随合成压力的升高而升高;不同掺杂浓度的样品获得最大功率因子(~10μWcm-1K-2)的合成压力均在1.5GPa左右;样品的热导率和晶格热导率整体上随着合成压力升高而降低。  相似文献   

10.
采用放电等离子烧结法制备了 Bi2 Te3/ Co Sb3二元梯度热电材料。 SEM分析结果表明 :均质材料 Bi2 Te3和Co Sb3在界面处结合紧密。当热端和冷端的温度分别保持在 80 0 K和 30 0 K时 ,分别对 2种均质材料的界面结合处的温度和长度进行了计算和设计 ,得出梯度热电材料界面结合处的最佳温度约为 5 0 0 K,相应的 Bi2 Te3和 Co Sb3长度分别为1.2 mm和 10 m m。同时通过对梯度热电材料的赛贝克系数和功率因子的研究发现 :梯度热电材料的赛贝克系数相对于均质材料在一个较宽的温度范围内具有较高的数值 ;在 36 0~ 4 6 0 K的温度范围内 ,梯度热电材料具有较 2种均质材料Bi2 Te3和 Co Sb3高的功率因子  相似文献   

11.
硒化银(Ag2Se)是一种典型的适用于室温附近的热电材料,尽管掺杂异质原子是优化热电性能的有效方法,但低能耗湿化学法制备的硒化银基热电材料往往难以实现精准掺杂。为了实现精准控制掺杂含量以制备高性能的硒化银基热电材料,采用单质硒(Se)和硝酸银(AgNO3)为原料,以乙二胺为溶剂,采用湿化学法制备硒化银基体粉末,再通过熔融法将单质硫(S)掺入硒化银,最后通过放电等离子烧结(SPS)制备成高性能块体材料。对不同硫(S)含量掺杂的硒化银基材料采用X射线衍射法(XRD)进行物相分析,使用能谱仪(EDS)进行微区元素分析,并利用热电性能测试系统对其在300~400 K温度范围内的热电性能进行测试。实验结果表明,掺杂样品在低温相下实现了泽贝克系数(α)的显著提升和热导率(κ)的显著下降,掺杂含量为3%摩尔百分比的样品在393 K的泽贝克系数约为-152μV·K-1,热导率约为0.91 W·m-1·K-1。最终,掺杂浓度为3%摩尔百分比的样品在393 K下取得0.81的最高z T值。因此,单...  相似文献   

12.
利用化学沉积技术在云母衬底上制备Bi_2Te_3薄膜,采用光学显微镜研究不同的制备条件对Bi_2Te_3薄膜样品形貌的影响,并使用X射线衍射仪、扫描电子显微镜、能谱仪和Seebeck系数电导率测试仪分析Bi_2Te_3薄膜的物相、厚度、元素含量和热电参数。实验结果表明,在蒸发源温度为525℃、携带气流流速为30sccm、生长压力为50Pa的最佳条件下制备出高质量连续、室温功率因子为48.2μWm~(-1)K~(-2)的Bi_2Te_3薄膜。  相似文献   

13.
Hf掺杂BiSbTe3结构与热电性能研究   总被引:1,自引:1,他引:0  
以高纯Hf、Bi、Sb和Te为原料,在1 000℃下,经10 h氩气保护熔融状态下反应,冷却球磨制粉,再在氮气保护下进行热压(450℃,20 MPa),成功制备出一系列不同Hf掺杂量的Hf2x(Bi,Sb)2-2xTe3化合物.X射线粉末衍射Rietveld分析说明,Hf在结构中占据6c晶位,以替代(Bi,Sb)的形式进入晶格.Hf掺杂引起BiSbTe3的Seebeck系数增大,电导率降低.功率因子在375 K时达最大值526 μW/mK2.  相似文献   

14.
采用固相烧结和放电等离子烧结(SPS)法制备CuRh_(2-2x)Mg_(2x)O_4样品,研究不同Mg含量对CuRh_(2-2x)Mg_(2x)O_4热电材料物相组成,晶粒尺寸和热电性能的影响.通过对样品进行XRD,断口形貌SEM,热导率及Seebeck-电阻率进行测试分析,检测结果表明:Mg掺杂后CuRh_(2-2x)Mg_(2x)O_4X射线衍射峰的峰位较CuRh_2O_4标准PDF卡片整体偏移,晶格常数减小;掺杂后的样品晶粒尺寸减小,Mg的掺入使CuRh_2O_4的热导率下降,并且掺杂量越多,热导率越小;Mg掺杂改善了CuRh_2O_4的电学性能,提高了样品的电导率.当Mg掺杂量x=0.25时,试样CuRh_(1.5)Mg_(0.5)O_4的ZT值取得最大值,在900℃下达到了0.182 28.  相似文献   

15.
采用了第一性原理的计算方法,通过密度泛函理论(DFT)以及玻尔兹曼输运方程(BTE)研究了双层CrI3的热电性能(TE)。计算了其能带图和态密度图(DOS),以及在10 K、30 K、50 K下的塞贝克系数S、电导率σ、电子热导率Ke、功率因子PF随着载流子浓度n的变化图。计算结果表明双层CrI3的基态是反铁磁性(AFM),在常数弛豫时间近似(CRTA),低温下表现出较高的电导率和塞贝克系数,p型的塞贝克系数大于n型,且不论是塞贝克系数还是电导率均对温度的敏感性很低。高的塞贝克系数以及高的电导率导致了较高的功率因数PF,1.686×10-4 Wm-1K-2(n型)和1.098×10-4 Wm-1K-2(p型),说明了双层CrI3具有优异的热电性能,且n型掺杂下的双层CrI3相对于p型掺杂的热电性能更加优异,为磁性热电材料的发展做出了贡献。  相似文献   

16.
用固相反应法制备(Ca1-xYx)Mn O3(x分别为0、0.03、0.05、0.07、0.09 mol)热电材料,用自制设备测试样品的热电性能,研究Y3+掺杂对Ca Mn O3热电性能的影响。结果表明:Y3+掺杂可以有效地改善样品的热电性能,其中(Ca0.91Y0.09)Mn O3样品的热电性能较优;当高温端温度为880 K时,测得电阻率为74 mΩ·m,Seebeck系数为-112μV/K,输出功率达到68 m W。  相似文献   

17.
Pseudoternary system (Bi_2Te_3-Sb_2Te_3-Sb_2Se_3) ceramic smeiconductor cooling materials were pre-pared in solid state reaction with conventional techniques ofsintering ceramics.The effect of doping on the properties ofthe material was studied.X-ray diffraction analysis showedthat n-p-type materials were solid solutions based on Bi_2Te_3and Sb_2Te_3 respectively.SEM photographs proved that theboth types of materials were inhomogeneous and layer struc-ture.The values of fingure of merit for n-type and p-typematerials were 3.4×10~(-3) K~(-1),respectively.The fabricatedthermoelectric modlules made of the materials provided excel-lent cooling effect.  相似文献   

18.
以单壁碳纳米管(SWCNTs)为基体,掺入适量的植酸、苯胺与过硫酸铵,通过原位溶液聚合制得植酸掺杂聚苯胺/酸化单壁碳纳米管(PA/PANI/SWCNTs)热电复合薄膜。通过扫描电子显微镜、傅里叶变换红外光谱、拉曼光谱、X-射线衍射、X-光电子能谱、热重分析和热电仪器表征了复合薄膜的结构与性能。结果表明:植酸掺杂聚苯胺为珊瑚状形貌,掺入适量的植酸掺杂聚苯胺和适当的提升温度有助于提升单壁碳纳米管基热电薄膜的功率因子。当植酸掺杂聚苯胺与酸化单壁碳纳米管的质量比为2∶10,温度为125℃时,PA/PANI/SWCNTs的功率因子最高,为(95.9±1.5)μW/(m·K2),对应的Seebeck系数和电导率分别为(44.5±0.5)μV/K和(48.4±0.3)kS/m。  相似文献   

19.
热电材料可直接在电能与热能之间直接转换,其在室温附近的应用广受关注。材料性能可由与效率正相关的热电优值ZT衡量。高ZT值热电材料需同时具有较低的晶格热导率、恰当的载流子浓度、合适的能带结构和理想的微观组织。本文综述了Bi2Te3系、α-MgAgSb以及half-Heusler合金等几种高ZT值室温热电材料的最新研究进展,并就未来研究做出展望。Bi2Te3基材料是目前为止研究最为广泛的室温热电材料。Bi2Te3空间群为R3m,在c轴方向形成以共价结合的Te-Bi-Te-Bi-Te为重叠单元的层状结构,单元与单元之间以范德华力结合。这一晶体结构使得该材料禁带宽度为0.15 eV,价带顶或导带底为6重能谷,从而同时具备了较高的电导率和Seebeck系数。也由于该材料中包含了重元素和弱键合,其晶格热导率比较低。因此,以Bi2Te3为基础形成了性能较好的p型(Bi2Te3)-(Sb2Te3)和n型(Bi2Te3)-(Bi2Se3)赝二元体系。p型Bi2Te3基材料方面,受超晶格材料极低热导率(~0.22 Wm-1K-1)的启发,任志锋和陈刚联合课题组率先用简单的球磨加快速热压工艺在p型Bi0.4Sb1.6Te3块体材料中获得了5~50 nm的晶粒,增强了声子散射,降低了晶格热导率,使ZT峰值达到了1.4。自此以后,多种引入纳米复合物以增强声子散射的研究得以开展。2015年,韩国Kim课题组甚至将Bi0.5Sb1.5Te3晶格热导率降低到了0.33 Wm-1K-1,使该材料ZT峰值达到1.86,遗憾的是该结果未能被其他课题组重复。最近有研究表明,这一优异性能并非来源于Kim课题组所称的对中频声子的有效散射,而是忽略了各向异性导致的。另一个有趣的现象是性能优越的p型(Bi1-xSbx)2Te3材料通常在x=0.75附近出现。以前曾有人认为这是由于此时价带平坦化后有效质量增加的原因,但G. J. Snyder等认为这是由于x=0.75时,第一价带与第二价带重叠,从而增加了参与输运的能带数量输运导致的。数据表明,这一模型与实验结果更吻合。相对于Bi2Te3基p型(Bi2Te3)-(Sb2Te3)材料,n型(Bi2Te3)-(Bi2Se3)材料则性能略低(ZT~1.2)。这主要是因为:该类p型材料可通过调控晶格缺陷来调控载流子浓度,而n型则通常只能通过掺杂来调控;p型材料在Bi/Sb为0.5/1.5时声子散射最强烈,同时还发生能带聚集;p型材料中电导与热导各向同向,而n型则各向异性,使得组织结构纳米化对降低n型材料热导率效果甚微。α-MgAgSb是2014年才进入人们视野的高性能室温热电材料,具有四方晶系结构,兼具低晶格热导率和高功率因子,因而峰值ZT达到1.4。近年来,对该材料结构的深入研究揭示了其晶格热导率低的原因:晶胞体积大、Ag-Sb间的弱键合、高密度Ag空位、Ag+和Mg2+的迁移引起的横声子模软化、U过程中强烈的非谐作用(大Grüneisen因子)、宽频声子散射等。独特的晶体结构决定了α-MgAgSb独特的能带结构。价带顶附近,其聚集能谷数为8,而导带底附近则为1,因而,仅p型α-MgAgSb热电优值较高。对该材料,通过掺杂提高载流子浓度以优化功率因子是必要的手段。在众多掺杂元素中,Li掺杂效果最好,可使载流子浓度和功率因子分别达到~1.2 ×1020 cm-3和~24 μW cm-1 K-2。由于其优异的性能和与Ag电极之间的低接触电阻,单臂p型α-MgAgSb器件拥有目前为止室温附近最高的热能-电能测试效率8.5%。Half-Heusler是另一类在热电发电领域极具前景的材料,除了具有较高的热电性能外,该材料稳定性和机械性能还异常好。最近的研究表明,常规材料中占主导作用的电子-声子耦合在该材料中被大幅度抑制是其高功率因子的起源;p型ZrCoSb和n型ZrNiSn功率因子分别可达~30和~50 μW cm-1 K-2,而p型Nb0.95M0.05FeSb (M=Ti, Hf, Zr)更是高达100 μW cm-1 K-2。然而,由于该类材料热导率很高,使得其室温ZT仅0.3左右。尽管室温热电材料研究取得了明显的进展,但仍需在以下方面进行攻关:降低n型Bi2Te3基热电材料热导率使其ZT值可与p型同系材料匹配;寻找可在机械性能、热电性能上与p型α-MgAgSb匹配的n型MgAgSb或类似材料;降低NbFeSb基材料热导率及寻找其n型配对材料。  相似文献   

20.
利用高温高压技术,在3 GPa1、200 K的条件下,对PbTe进行了Bi2Te3的掺杂,并在室温下对其进行了电阻率、赛贝克系数、热导率的测试。结果表明,高温高压下,掺杂微量的Bi2Te3对PbTe的热电性质有很大的影响,PbTe样品的品质因子随着掺杂Bi2Te3的剂量的增加先大幅度升高而后逐渐轻微下降,掺杂Bi2Te3的摩尔分数为1×10-4时其最大的品质因子高达9.3×10-4K-1。这一结果比常压下利用Bi2Te3对PbTe掺杂的样品高近20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号