共查询到15条相似文献,搜索用时 123 毫秒
1.
通过室温拉伸、高温拉伸,研究了固溶时效态Al-Cu-Mg-Ag合金力学性能随Si含量的变化关系; 利用扫描电镜、透射电镜和高分辨投射电镜观察不同Si含量合金峰时效态下的微观组织特征变化。研究结果表明: 合金中Si含量增多,会导致Al-Cu-Mg-Ag合金拉伸强度尤其是高温拉伸强度下降; Si含量从0.03%增加到0.20%,合金固溶时效后残余大尺寸第二相粒子(AlFeMnSi)数量增多,合金延伸率明显下降; 当Si含量大于0.10%时,合金基体中开始有β″(MgSi)相析出,影响时效初期析出过程中Mg-Ag团簇的形成,抑制了Ω相的析出,θ'相密度随之增加。 相似文献
2.
通过力学性能、电导率测试和差示扫描量热法(DSC)、能谱分析(EDX)及光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)观察, 分析研究了固溶处理对Al-Li-Cu-Mg-Ag-Zr合金组织与性能的影响。结果表明: 当固溶时间为30 min时, 随固溶温度升高, 合金的拉伸强度和硬度先升高后降低, 520 ℃固溶温度下合金的力学性能最好; 520 ℃下, 随固溶时间的延长, 合金力学性能也呈现出先升高后降低的趋势; 520 ℃/30 min固溶处理的合金能获得最佳时效组织模式, T1相数量多、尺寸细小、弥散分布, 合金的综合力学性能最佳, 在此固溶制度下合金的断裂机制呈现穿晶断裂和沿晶分层断裂的混合断裂模式; 固溶温度为525 ℃时合金有局部过烧现象。 相似文献
3.
通过维氏硬度试验、拉伸试验、晶间腐蚀试验、极化曲线试验以及透射电镜和扫描电镜观察,研究了不同峰时效状态(165℃/16 h、180℃/6 h和190℃/2 h)下Al-Cu-Mg-Ag合金的力学性能、显微组织和晶间腐蚀性能的差异。研究结果表明:3种峰时效状态下,180℃/6 h时效状态合金的Ω相和θ′相总数量密度最高,其抗拉强度和屈服强度分别为513.6 MPa和463.4 MPa。当时效温度达到190℃时,θ′相迅速粗化从而抑制Ω相的析出,降低了Ω相的数量密度。另外,不同峰时效状态的无沉淀析出带(PFZ)宽度从大到小依次为:180℃/6 h>190℃/2 h>165℃/16 h。由于在晶间腐蚀过程中,PFZ作为阳极优先被腐蚀,因此180℃/6 h时效状态合金的抗晶间腐蚀性能最差,而165℃/16 h时效状态合金的抗晶间腐蚀性能最好。 相似文献
4.
通过维氏硬度试验、拉伸试验、晶间腐蚀试验、极化曲线试验以及透射电镜和扫描电镜观察,研究了不同峰时效状态(165 ℃/16 h、180 ℃/6 h和190 ℃/2 h)下Al-Cu-Mg-Ag合金的力学性能、显微组织和晶间腐蚀性能的差异。研究结果表明: 3种峰时效状态下,180 ℃/6 h时效状态合金的Ω相和θ'相总数量密度最高,其抗拉强度和屈服强度分别为513.6 MPa和463.4 MPa。当时效温度达到190 ℃时,θ'相迅速粗化从而抑制Ω相的析出,降低了Ω相的数量密度。另外,不同峰时效状态的无沉淀析出带(PFZ)宽度从大到小依次为: 180 ℃/6 h>190 ℃/2 h>165 ℃/16 h。由于在晶间腐蚀过程中,PFZ作为阳极优先被腐蚀,因此180 ℃/6 h时效状态合金的抗晶间腐蚀性能最差,而165 ℃/16 h时效状态合金的抗晶间腐蚀性能最好。 相似文献
5.
研究了不同热处理制度对铸态Mg-5Sn-1.5Al-1Zn-1Si合金组织性能的影响。结果表明,固溶处理时,随着固溶时间延长,合金枝晶逐渐溶解、晶粒逐步球化,适宜的固溶处理制度为510℃×8 h,此时合金组织分布均匀,析出少量细小的二次颗粒相,延伸率较高;合金适宜的时效处理制度为200℃×16 h,此时偏聚在晶界处的合金相析出迁移,晶界清晰,组织均匀度高,合金屈服强度达到136.3 MPa,较铸态提升16.5%。510℃固溶8 h+200℃时效16 h处理后,组织均匀度和弥散程度进一步提升,抗拉强度和硬度分别达到178.2 MPa和59.6HB,相对铸态合金分别提升了21.6%和23.4%。 相似文献
6.
7.
8.
研究自制铸造高合金不锈钢的热处理工艺对其组织、力学性能和耐腐蚀性能的影响.结果表明,随固溶温度升高(950~1 100℃),试样耐点蚀性能显著提高.试验不锈钢最佳热处理工艺为1 100℃保温0.5 h+水冷的固溶处理和550℃保温4 h+油冷的时效处理,可以获得耐点蚀性能与力学性能的良好配合.该热处理工艺可使不锈钢具有好的耐腐蚀能力及综合力学性能. 相似文献
9.
通过拉伸测试、扫描电镜(SEM)、能谱分析(EDS)、透射电镜(TEM)和金相显微镜(OM)等手段, 研究了焊接速度以及焊后时效处理对Al-Cu-Mg-Ag合金电子束焊接接头性能的影响。结果表明: 随焊接速度提高, 焊接接头强度呈先上升后下降的趋势, 并在焊接速度1 200 mm/min时获得最大值358 MPa;焊后时效处理可以提升焊接接头抗拉强度, 其中焊接速度为1 200 mm/min时的焊接接头抗拉强度最大, 可达412 MPa, 为母材强度的77.6%。焊后时效合金性能的提高主要得益于θ'和X相的析出, 而焊缝熔合区晶界处Cu元素的偏析抑制了Ω相的析出。 相似文献
10.
研究了在Al-7Si-0.35Mg合金中添加Cu、Ce元素后, 热处理工艺对合金显微组织和力学性能的影响。实验结果表明, 较优的热处理工艺为505 ℃保温12 h, 淬火后160 ℃保温10 h。热处理后, 共晶硅相从铸态的不规则板条状、针尖状及粗大块状变为尺寸细小的长条状、球状; 合金布氏硬度提高了72%; 抗拉强度为393 MPa, 伸长率为7.4%, 分别提高了80%与68%; 合金的断裂方式从脆性断裂转变为准解理断裂。 相似文献
11.
稀土元素Y对Mg-Nd-Zn-Zr合金组织和高温力学性能的影响 总被引:2,自引:0,他引:2
制备了Mg-5.0Y-3.0Nd-0.5Zn-0.5Zr 和Mg-3.0Nd-0.5Zn-0.5Zr 2种合金, 研究了Y元素和Nd元素对合金组织和高温力学性能的影响。通过XRD分析了合金的物相组成进行了定性分析。稀土元素Nd在Mg-Nd-Zn-Zr合金中以Mg12Nd相存在于铸态组织晶界, Nd、Y在Mg-Y-Nd-Zn-Zr中以Mg41Nd5和Mg24Y5相存在于铸态组织晶界。这些相均具有很好的耐热性, 是主要的强化相。研究结果表明, Y对合金铸态组织有明显细化作用。合金挤压轧制后经过T6处理后进行高温拉伸, 与Mg-3.0Nd-0.5Zn-0.5Zr相比, 加Y的Mg-5.0Y-3.0Nd-0.5Zn-0.5Zr合金的抗拉强度和延伸率明显提高。300 ℃的抗拉强度达到了168.5 MPa, 延伸率为28.8%。 相似文献
12.
在275~400 ℃对Mg-6Al-2Sn-0.5Zn-0.5Y和Mg-5Al-4Sn-0.5Zn-0.5Y合金正挤压,利用光学金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)分析显微组织,并测试了其室温拉伸性能。结果表明,铸态合金主要由α-Mg、β-Mg17Al12相和Mg2Sn相组成。Sn含量由2%增加到4%后,Mg2Sn相和离异共晶β-Mg17Al12相体积分数增加,层片状共晶β-Mg17Al12相体积分数减少。挤压温度相同时,Mg-5Al-4Sn-0.5Zn-0.5Y合金挤压试样力学性能均优于Mg-6Al-2Sn-0.5Zn-0.5Y合金,275 ℃挤压试样抗拉和屈服强度最高,分别为329.9和254.4 MPa。两种合金的室温拉伸断裂方式均为准解理断裂。Sn的添加可有效促进挤压过程中动态再结晶的形核,并抑制再结晶晶粒长大,从而同时提高挤压态合金的强度和塑性。 相似文献
13.
时效处理对7050锻造铝合金微观组织及性能的影响 总被引:1,自引:0,他引:1
研究了不同时效工艺对7050锻造铝合金微观组织、力学性能和腐蚀性能的影响,结果表明:T74态(120 ℃/6 h + 175 ℃/8 h)合金晶内析出相主要为粗大的η'相和η相,晶界析出相粗大、相间距宽且存在宽的无沉淀析出带(PFZ),合金拥有较好的腐蚀性能,但力学性能差。四级时效态(100 ℃/24 h+175 ℃/3 h+ NA/24 h+80 ℃/34 h)合金基体析出相主要为GP区和细小的η'相,与回归再时效态(RRA)(100 ℃/24 h+175 ℃/3 h+80 ℃/34 h)类似,但GP区数量增多,该状态合金力学性能好;由于晶界析出相相间距小以及PFZ宽度较窄,该状态下合金的腐蚀性能差。 相似文献
14.
通过OM、SEM、EDS、拉伸测试、硬度检测等方法,研究了低温均匀化热处理工艺对特定成分的6082铝合金铸锭组织及性能的影响。结果表明:当均匀化温度从350℃升高至450℃时,随着温度的升高晶界上的第二相(α-Al(FeMnCr)Si)分解越充分,晶内析出相(Mg2Si)析出越均匀;温度升高对应的力学性能也相应提升,其中抗拉强度及硬度在450℃/10 h时达到最大值为162.5 MPa和53.3HV,导电率在450℃/15 h时达到最大为48.63%IACS;相同均匀化温度下保温10和15 h,对6082铝合金的组织和力学性能影响不大。 相似文献