首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
HVOF喷涂纳米结构WC-12Co涂层的组织结构分析   总被引:7,自引:3,他引:7  
赵辉  王群  丁彰雄  张云乾 《表面技术》2007,36(4):1-3,14
纳米结构WC-12Co涂层的研究目前已受到了广泛重视,对其组织结构及影响因素的研究有利于提高涂层性能.采用HVOF工艺制备了纳米结构、多峰结构及普通微米结构3种WC-12Co金属陶瓷复合涂层,并采用SEM、XRD等对粉末及涂层的显微形貌、组织结构进行了分析;探讨了粉末在喷涂过程中的氧化脱碳机理,并指出了与之相关的影响因素.结果表明:纳米结构WC-12Co涂层结构致密,孔隙率低,与基体结合状态良好;纳米粉末在喷涂过程中比微米粉末氧化失碳严重,并发生了不同的纳米晶粒的长大;纳米粉末在喷涂过程中的氧化脱碳程度不仅与喷涂工艺有关,还在很大程度上取决于粉末本身的结构特性.  相似文献   

2.
超音速火焰喷涂纳米结构WC-12Co涂层耐泥沙冲蚀性能研究   总被引:4,自引:1,他引:3  
采用超音速火焰喷涂(HVOF)分别制备了纳米结构、双峰结构及微米结构WC-12Co金属陶瓷复合涂层,比较了不同结构WC-12Co涂层的组织结构及显微硬度,进行了不同结构WC-12Co涂层和Ni60喷熔层的泥浆冲蚀磨损试验,并探讨了它们的泥浆冲蚀机理.结果表明:采用超音速火焰喷涂制备的纳米结构及双峰结构WC-12Co涂层结构致密,涂层显微硬度明显高于微米结构WC-12Co涂层;与微米结构WC-12Co涂层相比,纳米结构和双峰结构WC-12Co涂层具有更优良的抗泥浆冲蚀性能,其耐泥浆冲蚀性能分别提高了50%及20%以上.  相似文献   

3.
镁合金表面冷喷涂纳米WC-17Co涂层及其性能   总被引:3,自引:0,他引:3  
采用冷喷涂和超音速火焰喷涂(HVOF)在AZ80镁合金表面制备了纳米WC-17Co涂层。利用SEM分析了原始粉末形貌、喷涂粒子沉积行为及涂层显微结构,并采用球盘式摩擦磨损实验机考察了涂层的摩擦磨损性能。结果表明:采用冷喷涂工艺可在AZ80镁合金基体上制备出高质量的WC-17Co涂层,涂层的显微硬度为(1 380±82)HV,磨损率为9.1×10-7 mm3/Nm,其耐磨性较HVOF制备的WC-17Co涂层提高了1倍,较镁合金基材提高了3个数量级。研究表明,冷喷涂WC-17Co涂层在不对镁合金基体产生热影响的情况下,可以显著提高镁合金的表面性能,是一种新型镁合金表面强化工艺。  相似文献   

4.
介绍了WC-Co金属陶瓷复合涂层,并以WC-12Co为例,通过等离子喷涂方式在GH4169基体上进行了涂层的制备,开展了涂层外观、显微组织、硬度、结合强度的测试分析。结果表明,等离子喷涂制备WC-12Co涂层致密、硬度高,与基体结合强度高。最后,介绍了WC-12Co涂层在航空发动机上的应用。  相似文献   

5.
HVOF喷涂纳米WC-12Co涂层的性能研究   总被引:15,自引:0,他引:15  
为促进HVOF喷涂纳米WC-12Co涂层在工业上的应用,采用HVOF喷涂法分别制备了纳米和微米结构WC-12Co涂层.研究了涂层的结合强度,测试了两种涂层的显微硬度及耐冲蚀磨损性能,并利用扫描电镜对喷涂粉末、涂层显微组织、冲蚀表面形貌进行了分析.研究结果表明:两种涂层中纳米涂层显微硬度是普通涂层的1.5倍,最高达到1610 HV,纳米涂层中W C颗粒的分布更均匀,冲蚀率是微米级涂层的1/2左右,性能更优越.  相似文献   

6.
利用真空原位还原碳化反应合成超细/纳米WC-Co复合粉末,通过添加一定量Cr获得WC-10Co-4Cr复合粉末,经团聚造粒获得喷涂用复合粉末喂料,采用超音速火焰(HVOF)喷涂系统制备出超细/纳米结构的WC-10Co-4Cr涂层。利用X射线衍射仪,扫描电子显微镜和透射电子显微镜对涂层的物相、显微组织结构、元素分布特征等进行了系统表征,并对涂层耐磨性、耐蚀性进行了测试分析。结果表明:基于原位反应合成WC-Co复合粉制备的超细/纳米结构WC-10Co-4Cr涂层具有较好的耐磨性和耐腐蚀性。涂层以WC为主相,含有非晶结构的粘结相Co(Cr),同时存在少量六方晶体结构的W_2C相和非晶复相W_2C+Co(Cr)。对涂层中元素Co和Cr的分布进行了量化分析,得到其从WC晶粒到相界到共晶区再到Co区的变化规律。结合WC-10Co-4Cr复合粉末和超音速火焰喷涂工艺的特点,阐释了Cr在WC-10Co-4Cr涂层分布状态的形成原因,并讨论了对涂层性能的影响。  相似文献   

7.
粉末结构对HVOF喷涂WC-Co涂层组织性能的影响   总被引:1,自引:1,他引:0  
选用4种不同WC尺度的WC-12Co粉末作为初始喂料,通过超音速火焰喷涂系统(HVOF)制备了涂层。考察了不同粉末结构对涂层沉积过程的脱碳行为和涂层组织性能的影响。结果表明:WC颗粒尺寸减小加剧了涂层脱碳行为,涂层中W2C含量增加,粘结相非晶化现象明显,涂层硬度增加,但是当WC颗粒尺寸减小到纳米尺度时,韧性下降。双峰结构涂层表现出最好的韧性同时兼备较高的硬度。  相似文献   

8.
采用超音速火焰喷涂技术在45钢基体表面制备三种不同粒度的WC-12Co涂层,利用扫描电镜、X射线衍射仪、显微硬度计等仪器对涂层的组织结构与性能进行分析,研究了粉末粒度对涂层表面性能的影响。结果表明:随粉末粒度的减小,涂层致密度和显微硬度明显提高,WC分解逐渐增多,出现了微量的W2C和Co6W6C。微纳米复合粉末制备的WC-12Co涂层表现出了较好的性能。  相似文献   

9.
采用低能等离子喷涂技术,在不锈钢基体上制备WC-12%Co涂层。粉末被气体送到喷嘴内、阴极与阳极之间的区域,喷涂功率为3.9~9.1kW。利用XRD和SEM分析技术,对涂层的微观结构和相组成进行分析,研究喷涂功率对涂层硬度的影响。结果表明:在功率3.9kW时制备的涂层主要由WC相组成;喷涂功率在5-9kW时,涂层中开始出现W2C;在功率6.5kW时,涂层硬度最高为1500HV,喷涂功率超过6.5kW时,由于涂层中出现α-W2C,涂层的硬度降低。这表明低能等离子炬可以制备高性能的WC-Co涂层。  相似文献   

10.
为制备基体相晶粒细小、增强相均匀分布的SiC/Al纳米复合涂层,以Al、SiC为原料,采用高能球磨法获得SiC颗粒弥散分布的纳米晶Al基复合材料粉末,利用冷喷涂技术低温成型制备了SiC/Al纳米复合涂层,分析了SiC含量对复合涂层相结构、晶粒尺寸、微观结构、硬度及磨损性能的影响规律。结果表明:冷喷涂可实现球磨纳米晶复合粉末结构的原位移植,所制备SiC/Al纳米复合涂层组织致密,微米及亚微米级SiC弥散分布在纳米晶Al(约80 nm)基体之上;SiC颗粒对Al基体有明显强化作用,冷喷涂SiC/Al纳米复合涂层的硬度随SiC体积分数的增加而显著增加,50% SiC/Al纳米复合涂层的硬度高达515 HV0.3,约为Al块材的13倍;冷喷涂SiC/Al纳米复合涂层的耐磨损性能随着SiC含量增加而显著提高,涂层磨损失效机制为磨粒对基体的切削犁沟变形。  相似文献   

11.
The limited deformation of hard cermet particles and impacted coating makes it difficult for conventional thermal spray powders to continuously build up on impact in cold spraying. In this study, three nanostructured WC-12Co powders with different porous structure and apparent hardness were employed to deposit WC-Co coatings on stainless steel substrate by cold spraying. The deposition characteristics of three powders of porosity from 44 to 5% were investigated. It was found that WC-Co coating is easily built-up using porous powders with WC particles bonded loosely and a low hardness. The microhardness of WC-12Co coatings varied from 400 to 1790 Hv with powders and spray conditions, which depends on the densification effects by impacting particles. With porous WC-Co powders, the fracture of particles on impact may occur and low deposition efficiency during cold spraying. The successful building up of coating at high deposition efficiency depends on the design of powder porous structure.  相似文献   

12.
There has been an increase in interest of late regarding the properties of thermally sprayed WC-Co cermets with nanograin carbide particles. These powders have shown interesting properties in sintered components, giving high values of hardness (2200–2300 VHN) and improved wear properties. The method used for the processing for these materials—solution formation, spray drying and chemical conversion, rather than introduction of WC as solid particles to a molten binder—allows the formation of sub-100 nm WC particles as a hard second phase. The work presented here examined the effect of composition on the microstructure and wear properties of some nanostructured WC-Co materials. WC-Co cermets with 8, 10, 12, and 15% Co binder phase were deposited using a Sulzer Metco hybrid DJ HVOF thermal spray system. Optimization of deposition conditions was necessary because of the unique morphology of the powders (thick-shelled hollow spheres) to produce dense consolidated deposits. There is a higher degree of decarburization of the WC phase in the nanostructured materials compared with the conventional WC-Co. This dissolution of the hard phase is also noted to increase on decreasing binder phase content. The nanostructured WC-Co coatings have a lower wear resistance compared with the conventional WC-Co for abrasive wear and small particle erosion. The abrasive wear resistance of these nanostructured materials was found to increase on decreasing cobalt binder content. This trend in abrasive wear resistance is consistent with studies on conventional sized cermets and is believed to be more dependent upon proportion of binder phase content than degree of decarburization for the materials studied. The small particle erosion resistance of the nanostructured coatings was found to increase on increasing cobalt content.  相似文献   

13.
Deposition effects of WC particle size on cold sprayed WC-Co coatings   总被引:2,自引:0,他引:2  
The WC particle size and its influence on the deposition of Co-based cermets are examined. Micron and nanostructured powders with similar Co content were employed. Varying the WC particle size influenced significantly the deposition efficiency of the coating process. Micrometer-structured WC-Co feedstocks did not permit coating build up when processed under comparable or elevated thermal spray parameters used for the nanostructured WC-Co feedstocks. In addition, micrometer-structured WC-Co coatings exhibited a conjoint erosion and deposition effect on the surface. Fine WC particles (< 1 μm) were observed near the substrate interface and larger WC particles (1-2 μm) in the vicinity of the coating surface. These observations indicate the existence of a critical WC particle size for deposition by the cold spray method and that the size criteria arises due to the formation and cohesion mechanisms within the coating layer.Nanostructured test specimens displayed (i) a dense microstructure with little presence of porosity, (ii) a crack free interface between the coating and substrate that indicated good adhesion, and (iii) no observable phase changes. The XRD patterns of each powder and their respective coatings did not have observable peak differences but the diffraction peak broadening of coatings indicated that there was grain refinement during the coating process. Furthermore, all nanostructured as-sprayed WC-Co coatings exhibited Vickers hardness values above HV1000. The nanostructured WC-Co coatings demonstrated adhesive strengths that exceeded the limits of the glue (60 MPa).  相似文献   

14.
Characterization of Nanostructured WC-Co Deposited by Cold Spraying   总被引:1,自引:0,他引:1  
Nanostructured WC-Co coating was deposited by cold spraying using a nanostructured WC-12Co powder. The critical velocity for the particle to deposit was measured. The coating microstructure was characterized by X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The coating hardness was tested using a Vickers hardness tester. The deposition behavior of single WC-Co particle was examined. WC particle size was measured for comparison of deposit properties to that of sintered bulk. The result shows that the nanostructured WC-Co coating can be successfully deposited by cold spraying using nanostructured powders. The coating exhibited a dense microstructure with full retention of the original nanostructure in the powder to the coating. The test of microhardness of the coating yielded a value of over 1820 Hv0.3, which is comparable to that of sintered nanostructured WC-Co. The deposition behavior of WC-Co powders as superhard cermet materials in cold spraying and powder structure effects is discussed. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

15.
通过探讨WC颗粒对扁平粒子厚度及喷涂后WC颗粒尺寸变化的影响,研究了超音速火焰喷涂过程中WC-Co深层的沉积过程。使用具有不同WC尺寸的四种WC-Co粉末,采用JET-KOTE喷枪系统喷制了WC-Co涂层。结果发现涂层中WC颗粒的大小主要取决于原始粉末中WC的尺寸.在粉末穿越火焰的过程中,大多数WC处于固态;WC-Co涂层的沉积涉及固液两相离子的扁平化,而不是象在优化条件下金属或陶瓷材料喷涂过程中仅存在单一液相的情况。很明显WC-Co粉末中的WC的大小对涂层的形成影响很大、在超音速火焰喷涂条件下当液固粒子碰撞到已形成的涂层表面上时,其中的大颗粒WC粒子容易被反弹脱落。基于实验结果,提出了计算由液相聚积固相形成的波固两相颗粒碰撞到表面时形成扁平粒子的厚度的模型。  相似文献   

16.
以W、C、Co为原料粉末,经机械活化-反应热处理工艺制备纳米晶WC-Co复合粉末。实验发现活化粉末的固相反应具有以下特征:反应温度低,反应速度快。在800℃热处理时已有大量的WC生成。在850℃保温25minW2C就完成了向WC的转化。经900℃保温35min制备了晶粒尺寸为30.5nm的WC-Co复合粉末。  相似文献   

17.
Recycled hard metal-base wear-resistant composite coatings   总被引:1,自引:0,他引:1  
The abrasion-erosion wear resistance of composite coatings from self-fluxing Ni-base alloy and WC-Co hard metal powders is evaluated. The resistance of thermal sprayed and melted NiCrSiB-(WC-Co) coatings was found to be markedly higher than that of NiCrSiB and slightly higher than that of comparative welded coatings. Microstructural and surface analyses were used to describe the coatings and the wear damage. Based on the principles of creating wear-resistant coatings and on experimental studies of wear resistance, high wear-resistant, composite NiCrSiB-(WC-Co) coatings were fabricated. These coatings exhibited 300% higher wear resistance than 0.45% C steel.  相似文献   

18.
Surface welding of hard alloys allows for the protection of components exposed to severe wear. Nevertheless, deposition of these hard alloys requires special procedures in order to minimize cracks and other welding defects. This work evaluated an alternative procedure to reduce welding defects as hard surfaces were produced. For that purpose fine WC-Co were mixed with iron powders and with an atomized cobalt based alloy, respectively, and processed with Plasma Transferred Arc (PTA). Powder mixtures with 5 wt.% and 35 wt.% WC-Co were deposited with two current intensities 150 A and 170 A on carbon steel plates. It was aimed to melt and dissolve the carbides to produce defect free hard iron based and cobalt based coatings. Surfaces were characterized for their soundness, hardness and microstructure regarding the effect of powder mixture chemical composition and current intensity used during processing. Visual inspection, dilution measurements, X-ray diffraction of powder mixtures and coatings, Vickers microhardness, optical and Scanning Electron Microscopy and pin-on-disc tests were used for surface evaluation. Results showed that PTA deposition allowed for the enrichment of coatings as carbides were melted in the plasma arc and dissolve in the different matrix.  相似文献   

19.
Warm spray (WS) process, which can control the temperature of a combustion gas jet used to propel powder, has been successfully applied to deposit WC-Co coatings. Detrimental reactions resulting from dissolution of WC into Co binder and decarburization were suppressed effectively by keeping the WC-Co particles’ temperature below the m.p. of the binder phase. In this study, three nano-structured WC-12Co powders with different particle strengths were prepared by changing the sintering conditions of spray-dried powder and were deposited by WS. The deposition efficiency and porosity of the coatings decreased with increasing the particle strength. The coating deposited from the powder with very low particle strength showed significant phase changes, while those deposited from the higher particle strengths showed almost no change. Particle Image Velocimetry revealed significant disintegration of the weakest powder, which explains the changes observed. The hardness and wear properties of the former coating, therefore, were inferior to the other two.  相似文献   

20.
In this study, WC-Co composite powder was synthesized by two-step carbonization method using W, Co and C as raw materials. X-ray diffraction (XRD) showed that the η phase (Co6W6C) was kept at 1100 °C for 1 h under vacuum, and it could be completely carbonized into WC-Co composite powders. The surface morphology of WC-Co composite powders was analyzed by scanning electron microscope (SEM). The effects of η phase and second phase (W phase) on WC morphology and Co phase distribution were investigated. Electron backscattered diffraction (EBSD) was used to analyze WC-10 wt% Co cemented carbide particle distribution. Comparison of transverse rupture strength, hardness and fracture toughness of two kinds of WC-10 wt% Co cemented carbides synthesized by WC-Co composite powders + WC and WC + Co respectively, the cemented carbide of composite powders + WC increases the fracture toughness from 11.4 ± 0.3 MPa·m1/2 to 12.4 ± 0.3 MPa·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号