首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dense Nb2AlC ceramic was synthesized from NbC, Nb, and Al powder mixture at 1650°C and a pressure of 30 MPa for 90 min using an in situ reaction/hot-pressing method. The reaction kinetics, microstructure, physical, and mechanical properties of the fabricated material were investigated. A thermal expansion coefficient of ∼8.1 × 10−6 K−1 was measured in the temperature range of 30°–1050°C. At room temperature a thermal conductivity of ∼20 W·(m·K)−1 and a Vickers hardness of ∼4.5 GPa were determined. The material attained Young's modulus, four-point bending strength and fracture toughness of ∼294 GPa, ∼443 MPa, and ∼5.9 MPa·m1/2, respectively. The nanolayered grains with a mean grain size of 17 μm contributed to the damage tolerance of this ceramic. Quenching from 600°, 800°, and 1000°C into water at room temperature resulted in decrease in bending strength from 443 MPa for the as-synthesized Nb2AlC to 391, 156, and 149 MPa, respectively.  相似文献   

2.
Bulk Ti3AlC ceramic containing 2.68 wt% TiC was prepared by an in situ reaction/hot-pressing route. The reaction path, microstructure, mechanical and thermal properties were systematically investigated. At room temperature Vickers hardness of Ti3AlC ceramic is 7.8 GPa. The flexural strength, compressive strength, and fracture toughness are 182, 708 MPa, and 2.6 MPa·m1/2, respectively. Its apparent Young's modulus, shear modulus, bulk modulus and Possion's ratio are 208.9, 83.4, 140.4 GPa, and 0.25 at room temperature. Apparent Young's modulus decreases slowly with the increasing temperature, and at 1210°C the modulus is 170 GPa. The average coefficient of thermal expansion of Ti3AlC ceramic is about 10.1 × 10−6 K−1 in the temperature range of 150°–1200°C. Both the molar heat capacity and thermal conductivity increase with an increase in the temperature. At 300 and 1373 K, the molar heat capacities are 87 and 143·J·(mol·K)−1, while the thermal conductivities are 8.19 and 15.6 W·(m·K)−1, respectively.  相似文献   

3.
Polycrystalline bulk samples of Ti3SiC2 were fabricated by reactively hot-pressing Ti, graphite, and SiC powders at 40 MPa and 1600°C for 4 h. This compound has remarkable properties. Its compressive strength, measured at room temperature, was 600 MPa, and dropped to 260 MPa at 1300°C in air. Although the room-temperature failure was brittle, the high-temperature load-displacement curve shows significant plastic behavior. The oxidation is parabolic and at 1000° and 1400°C the parabolic rate constants were, respectively, 2 × 10−8 and 2 × 10−5 kg2-m−4.s−1. The activation energy for oxidation is thus =300 kJ/mol. The room-temperature electrical conductivity is 4.5 × 106Ω−1.m−1, roughly twice that of pure Ti. The thermal expansion coefficient in the temperature range 25° to 1000°C, the room-temperature thermal conductivity, and the heat capacity are respectively, 10 × 10−6°C−1, 43 W/(m.K), and 588 J/(kgK). With a hardness of 4 GPa and a Young's modulus of 320 GPa, it is relatively soft, but reasonably stiff. Furthermore, Ti3SiC2 does not appear to be susceptible to thermal shock; quenching from 1400°C into water does not affect the postquench bend strength. As significantly, this compound is as readily machinable as graphite. Scanning electron microscopy of polished and fractured surfaces leaves little doubt as to its layered nature.  相似文献   

4.
The thermal and electrical properties of MoSi2 and/or SiC-containing ZrB2-based composites and the effects of MoSi2 and SiC contents were examined in hot-pressed ZrB2–MoSi2–SiC composites. The thermal conductivity and electrical conductivity of the ZrB2–MoSi2–SiC composites were measured at room temperature by a nanoflash technique and a current–voltage method, respectively. The results indicate that the thermal and electrical conductivities of ZrB2–MoSi2–SiC composites are dependent on the amount of MoSi2 and SiC. The thermal conductivities observed for all of the compositions were more than 75 W·(m·K)−1. A maximum conductivity of 97.55 W·(m·K)−1 was measured for the 20 vol% MoSi2-30 vol% SiC-containing ZrB2 composite. On the other hand, the electrical conductivities observed for all of the compositions were in the range from 4.07 × 10–8.11 × 10 Ω−1·cm−1.  相似文献   

5.
The effects of heat treatment in Ar-O2 and H2-H2O atmospheres on the flexural strength of hot isostatically pressed Si3N4 were investigated. Increases in room-temperature strength, to values significantly above that of the aspolished material, were observed when the Si3N4 was exposed at 1400°C to (1) H2 with water vapor pressure ( P H2O) greater than 1 × 10−4 MPa or (2) Ar with oxygen partial pressure ( P O2) of between 7 × 10−6 and 1.5 × 10−5 MPa. However, the strength of the material was degraded when the P H2O in H2 was lower than 1 × 10−4 MPa, and essentially unaffected when the P O2 in Ar was higher than 1.5 × 10−5 MPa. We suggest that the observed strength increases are the result of strength-limiting surface flaws being healed by a Y2Si2O7 layer formed during exposure.  相似文献   

6.
Dense and predominantly single-phase samples of Cr2AlC, together with a trace amount of Cr7C3, were fabricated by hot pressing of a mixture of chromium, aluminum, and graphite powders at 1400°C for 1 h. The hardness, Young's modulus, flexural strength, and compressive strength of Cr2AlC samples were 5.2, 288 GPa, 483±29, and 1159±23 MPa, respectively, which are comparable with those of Ti3AlC2 and Nb2AlC. The material exhibits good damage tolerance. For indentation loads up to 50 N, the post-indentation flexural strengths decrease by approximately 10% and by 31% for a load of 100 N. The flexural strengths of Cr2AlC samples quenched from 300°C to room temperature decrease from 483 to 455 MPa, while the retained strengths decrease quickly to 199 MPa when the quench temperature increases to 500°C. A further increase in quench temperature to 700°, 900°, and 1100°C results in a small reduction of strength.  相似文献   

7.
Thermal expansion of the low-temperature form of BaB2O4 (β-BaB2O4) crystal has been measured along the principal crystallographic directions over a temperature range of 9° to 874°C by means of high-temperature X-ray powder diffraction. This crystal belongs to the trigonal system and exhibits strongly anisotropic thermal expansions. The expansion along the c axis is from 12.720 to 13.214 Å (1.2720 to 1.3214 nm), whereas it is from 12.531 to 12.578 Å (1.2531 to 1.2578 nm) along the a axis. The expansions are nonlinear. The coefficients A, B , and C in the expansion formula L t = L 0(1 + At + Bt 2+ Ct 3) are given as follows: a axis, A = 1.535 × 10−7, B = 6.047 × 10−9, C = -1.261 × 10−12; c axis, A = 3.256 × 10−5, B = 1.341 × 10−8, C = -1.954 × 10−12; and cell volume V, A = 3.107 × 10−5, B = 3.406 × 10−8, C = -1.197 × 10−11. Based on α t = (d L t /d t )/ L 0, the thermal expansion coefficients are also given as a function of temperature for the crystallographic axes a , c , and cell volume V.  相似文献   

8.
The precursor powders of Ca3Co4O9 were synthesized by a sol–gel method. The results of X-ray diffraction and thermogravimetric and differential thermal analyses patterns indicate that pure Ca3Co4O9 powders could be obtained by calcining the precursor at 800°C for 2 h. High dense Ca3Co4O9 ceramic samples (∼99% of theoretical density) were prepared by the spark plasma sintering (SPS) method. Compared with the conventional sintering (CS), the SPS samples exhibit much higher electrical conductivity and power factor which are respectively about 118 S/cm and 3.51 × 10−4 W·(m·K2)−1. The SPS method is greatly effective for improving the thermoelectric properties of Ca3Co4O9 oxide ceramics.  相似文献   

9.
We measured the volume thermal expansion of Ti3SiC2 from 25° to 1400°C using high-temperature X-ray diffraction using a resistive heated cell. A piece of molybdenum foil with a 250 μm hole contained the sample material (Ti3SiC2+Pt). Thermal expansion of the polycrystalline sample was measured under a constant argon flow to prevent oxidation of Ti3SiC2 and the molybdenum heater. From the lattice parameters of platinum (internal standard), we calculated the temperature by using thermal expansion data published in the literature. The molar volume change of Ti3SiC2 as a function of temperature in °C is given by: V M (cm3/mol)=43.20 (2)+9.0 (5) × 10−4 T +1.8(4) × 10−7 T 2. The temperature variation of the volumetric thermal expansion coefficient is given by: αv (°C−1)=2.095 (1) × 10−5+7.700 (1) × 10−9 T . Furthermore, the results indicate that the thermal expansion anisotropy of Ti3SiC2 is quite mild in accordance with previous work.  相似文献   

10.
The crystal structure of YAl3C3 was refined from laboratory X-ray powder diffraction data (Cu K α1) using the Rietveld method. The crystal structure is hexagonal (space group P 63 mc , Z =2) with lattice dimensions a =0.342157(4) nm, c =1.72820(1) nm, and V =0.175217(3) nm3. The final reliability indices were R wp=9.94% ( R wp/ R e=1.18), R p=7.36%, R B=1.77%, and R F=1.03%. The compound shows an intergrowth structure with electroconductive [YC2] thin slabs separated by Al4C3-type [AlC] layers. This material had thermoelectric properties superior to those of the layered carbides Zr2[Al3.56Si0.44]C5, Zr2Al3C4, and Zr3Al3C5 in the temperature range of 500– 1073 K, with a maximal power-factor value of 1.96 × 10−4 W·(m·K2)−1 at 1073 K.  相似文献   

11.
The deviation from stoichiometry, δ, in Cr2−δO3 was measured by a tensivolumetric method in the high pO2 range of ≊104 to 104 Pa at 1100°C. The value of δ, or chromium vacancy concentration, was≊9×10−5 mol/mol Cr2O3 in air for Cr2O3 with 99.999% purity. The chemical diffusion coefficient, DT, determined from equilibration data was ≊4.6× cm2·s−1 at 1100°C for pO2= 2.2 ×101 Pa. The self-diffusion coefficient of Cr ions was calculated from and δ and found to be≊1.6×10-17 cm2-s−1, in good agreement with recently measured values.  相似文献   

12.
Monazite-type CePO4 powder (average grain size 0.3 μm) was dry-pressed to disks or bars. The green compacts began to sinter above 950°C. Relative density ≧ 99% and apparent porosity <1% were achieved when the specimens were sintered at 1500°C for 1 h in air. The linear thermal expansion coefficient and thermal conductivity of the CePO4 ceramics were 9 × 10−6/°C to 11 × 10−6/°C (200° to 1300°C) and 1.81 W/(m · K) (500°C), respectively. Bending strength of the ceramics (average grain size 4 μm) was 174 ± 28 MPa (room temperature). The CePO4 ceramics were cracked or decomposed by acidic or alkaline aqueous solutions at high temperatures.  相似文献   

13.
Purified air is passed over a specimen of YBa2Cu3O7– x at 890°C; the vaporized substances are condensed in a pure alumina tube, then subjected to inductively controlled plasma analysis. Vapor pressure values of 2.5 × 10−5 Pa for BaO( g ), 1.2 × 10−4 Pa for Cu( g ), and 2.2 × 10−5 Pa for CuO( g ) are obtained under 2.1 × 104 Pa (0.21 bar) of oxygen pressure. No Y vapor is detected at this temperature.  相似文献   

14.
The knowledge of the steady-state stress for plastic deformation as a function of temperature and strain rate is essential for hot-forming superconducting material into commercially useful shapes. In this paper, results are presented on the experimental determination of the rheology of fully dense polycrystalline Y1Ba2Cu3O7−x superconducting material at temperatures ranging from 750° to 950°C and strain rates of 10−4, 10−5, and 10−6 s−1. The data are best fitted by a power law: ε(s−1)=8.9 × 10−17. (s−1) σ2.5 (Pa) exp [−2.01 × 105(J·mol−1)|RT]. X-ray analysis shows that the superconducting material retains its phase composition after nearly 70% total strain of the sample. A strong anisotropy in the resistivity of the deformed samples is observed because of the development of a preferred orientation of the a or b axis of Y1Ba2Cu3O7−x orthorhombic perovskite single crystals perpendicular to the principal maximum compressive stress.  相似文献   

15.
Silicon nitride ceramics were prepared by spark plasma sintering (SPS) at temperatures of 1450°–1600°C for 3–12 min, using α-Si3N4 powders as raw materials and MgSiN2 as sintering additives. Almost full density of the sample was achieved after sintering at 1450°C for 6 min, while there was about 80 wt%α-Si3N4 phase left in the sintered material. α-Si3N4 was completely transformed to β-Si3N4 after sintering at 1500°C for 12 min. The thermal conductivity of sintered materials increased with increasing sintering temperature or holding time. Thermal conductivity of 100 W·(m·K)−1 was achieved after sintering at 1600°C for 12 min. The results imply that SPS is an effective and fast method to fabricate β-Si3N4 ceramics with high thermal conductivity when appropriate additives are used.  相似文献   

16.
β-Si3N4 ceramics sintered with Yb2O3 and ZrO2 were fabricated by gas-pressure sintering at 1950°C for 16 h changing the ratio of "fine" and "coarse" high-purity β-Si3N4 raw powders, and their microstructures were quantitatively evaluated. It was found that the amount of large grains (greater than a few tens of micrometers) could be drastically reduced by mixing a small amount of "coarse" powder with a "fine" one, while maintaining high thermal conductivity (>140 W·(m·K)−1). Thus, this work demonstrates that it is possible for β-Si3N4 ceramics to achieve high thermal conductivity and high strength simultaneously by optimizing the particle size distribution of raw powder.  相似文献   

17.
Tin(IV) oxide (SnO2) crystallizes at room temperature by adding hydrazine monohydrate ((NH2)2· H2O) to a hydrochloric acid solution of tin, followed by washing and drying. Well-densified SnO2 ceramics (99.8% of theoretical) with an average grain size of 0.9 μm have been fabricated by hot isostatic pressing for 2 h at 900°C and 196 MPa. Their Vickers hardness and bending strength are 14.4 GPa and 200 MPa, respectively. They exhibit an electrical conductivity of 2 × 10−3−9 × 10−3 S·cm−1 at room temperature.  相似文献   

18.
Phase-pure perovskite Pb(Zn x Mg1– x )1/3Nb2/3O3 solid solution (PZ x M1– x N) is obtained for x ≦ 0.7 by heating a milled stoichiometric mixture of PbO, Mg(OH)2, Nb2O5, and 2ZnCO3·3Zn(OH)2·H2O at 1100°C for 1 h. Percent perovskite ( f P) with respect to total crystalline phase decreases with increasing temperature of subsequent heating then increases to 900°C for the mixtures where x ≦ 0.8 and milled for 3 h. For mixtures with x = 0.9 and x = 1, f P decreases monotonically. Curie temperature increases almost linearly with increasing x up to x = 0.7. The maximum dielectric constant at 1 kHz is 2×104 and 1.7×104 for the mixture with x = 0.4 and x = 0.7, respectively. The stabilization mechanism of strained perovskite is discussed.  相似文献   

19.
A layered ternary carbide phase, Ti3AlC2, was synthesized by hot pressing from the starting materials of Ti, aluminum, and activated carbon at 1400°C for 2 h. Its composites were also fabricated through addition of micro-sized SiC and partially stabilized zirconia particulates to the pulverized Ti3AlC2 powders. The polycrystalline Ti3AlC2 ceramic obtained has a flexural strength of 172 MPa and a fracture toughness of 4.6 MPa·m1/2, respectively. This compound is relatively soft (Vikers hardness of 2.7 GPa) and exhibits good electrical conductivity with an electrical resistivity of 8.2 μΩ·m. Both the Ti3AlC2/SiC and Ti3AlC2/ZrO2 composites are superior to the monolithic Ti3AlC2 ceramic in strength, fracture toughness, and micro-hardness.  相似文献   

20.
Crystals of β-Ca2SiO4 (space group P 121/ n 1) were examined by high-temperature powder X-ray diffractometry to determine the change in unit-cell dimensions with temperature up to 645°C. The temperature dependence of the principal expansion coefficients (αi) found from the matrix algebra analysis was as follows: α1= 20.492 × 10−6+ 16.490 × 10−9 ( T - 25)°C−1, α2= 7.494 × 10−6+ 5.168 × 10−9( T - 25)°C−1, α3=−0.842 × 10−6− 1.497 × 10−9( T - 25)°C−1. The expansion coefficient α1, nearly along [302] was approximately 3 times α2 along the b -axis. Very small contraction (α3) occurred nearly along [     01]. The volume changes upon martensitic transformations of β↔αL' were very small, and the strain accommodation would be almost complete. This is consistent with the thermoelasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号