首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultra-thin (5–50 nm) layers of aluminium and tantalum oxides deposited by atomic layer deposition (ALD) on a stainless steel substrate (316L) for corrosion protection have been investigated by electrochemical methods (linear scan voltammetry, LSV, and electrochemical impedance spectroscopy, EIS) and time-of-flight secondary ion mass spectrometry, ToF-SIMS. The effects of the deposition temperature (250 °C and 160 °C) and coating thickness were addressed. ToF-SIMS elemental depth profiling shows a marked effect of the organic and water precursors used for deposition and of the substrate surface contamination on the level of C and OH trace contamination in the coating, and a beneficial effect of increasing the deposition temperature. The polarization data show a decrease of the current density by up to four orders of magnitude with increasing coating thickness from 5 to 50 nm. The 50 nm films block the pitting corrosion in 0.8 M NaCl. The uncoated surface fraction (quantified from the current density and allowing a ranking of the efficiency of the coating, also confirmed by the capacitance and resistance values extracted from the EIS data) was 0.03% with a 50 nm thick Al2O3 film deposited at 250 °C. The correlation between the porosity values of the coatings and the level of C and OH traces observed by ToF-SIMS points to a marked effect of the coating contaminants on the sealing performance of the coatings and on the corrosion resistance of the coated systems.  相似文献   

2.
Surface nanocrystallization by mechanical attrition was used to enhance the chemical vapor deposition process. An aluminum (Al) diffusion coating was produced on AZ91 Mg alloy surface. This process was conducted at a relatively low temperature (400°C) for a short time of 120 min. The results indicated that a continuous and dense Mg17Al12 intermetallic coating with a thickness of ~8 μm formed on the Mg alloy substrate. Almost no corrosion was observed after the coated samples were immersed in 3 wt % NaCl solution for 6 h, reflecting a relatively good corrosion resistance. The formation mechanism of the Al diffusion coating is discussed based on the experimental results.  相似文献   

3.
Corrosion is the deterioration of materials by chemical interaction with their environment. In the oil and gas industry, corrosion of the pipelines and other equipment is one of the leading causes of failure and the corrosion-related costs are very high. Hence, corrosion protection is an essential requirement. In this study, the objective is to analysis of the corrosion protection behavior of spray Alumina-Titania (Al2O3-TiO2) oxide ceramic coating on carbon steel pipes C45 using two different thermal spray coatings processes. These two different thermal spraying coating, High velocity oxy-fuel (HVOF) and plasma thermal spraying techniques can be used instead of extensive treatment by expensive chemical formation of coatings on pipelines and equipment to improve or restore a component's surface properties or dimensions and to protect them from corrosion. Molten or semi-molten ceramic composite powders are sprayed on the surface in order to produce a dense coating layer. FESEM of coated samples showed that a high temperature of plasma coating method end in melting the ceramic powders and creation of completely melted regions on the coated samples’ surface compared to HVOF coating techniques. Corrosion testing of coated samples in seawater (3.5% NaCl) was conducted within 30 days. Electrochemical impedance spectroscopy (EIS) as well as potentiodynamic polarization outcomes represented that the corrosion resistivity of plasma coating technique for this type of ceramic composite is better than HVOF coating technique. However, both types of coating techniques are protecting the substrate against seawater.  相似文献   

4.
The corrosion resistance characteristics of three coatings on magnesium alloy AZ31—conventional paint with phosphate film, cathodic electrodeposition coating (E-coating), and E-coating pretreated with silane (Mg/silane/E-coating)—have been studied by means of electrochemical impedance spectroscopy (EIS) in a 3.5 wt% NaCl neutral aqueous solution and salt spray test using ASTM B117. Silane film was obtained by dipping AZ31 specimens in diluted hydroalcoholic silanic solutions and successively curing. It was found that the corrosion resistance of the Mg alloy with E-coating was superior to conventional paint and could be further enhanced with silane pretreatment as an interfacial film. The results of water volume fraction (Φsaturation) and diffusion coefficient (D) also indicated that the Mg/silane/E-coating possessed excellent compactness and corrosion resistance. A model of the corrosion mechanism for Mg/silane/E-coating has been presented through EIS analysis.  相似文献   

5.
Polypyrrole (PPy) and Polypyrrole‐ZnO (PPy‐ZnO) nanocomposites were electrodeposited on mild steel and its corrosion protection ability was studied by Tafel and Impedance techniques in 3.5% NaCl solution. Pure Polypyrrole film was not found to protect the mild steel perfectly but the coating with nano‐sized ZnO (PPy‐ZnO) has dramatically increased the corrosion resistance of mild steel. Electrochemical Impedance Spectroscopy (EIS) measurements indicated that the coating resistance (Rcoat) and corrosion resistance (Rcorr) values for the PPy‐ZnO nanocomposite coating was much higher than that of pure PPy coated electrode. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The electrochemical impedance spectroscopy (EIS) of epoxy-coated aluminum alloy LY12 has been investigated during exposure to 3.5% NaCl solution. Using the continuous simulation of EIS by expanded general electrical model, the time-dependent impedance model of the alloy/coating/solution system was deduced. The results shown that the composite electrode displayed a barrier behavior before water and oxygen penetrated to alloy base. After water and oxygen reached the base, the impedance associated with corrosion of alloy base changed with the immersion time as following: (i) active corrosion period at the beginning (double-layer capacitance, Cdl, in parallel to the charge transfer resistance of electrochemical corrosion Rct), (ii) impeding of the diffusion of corrosion production at the intermediate period as a result of the presence of coated film (a constant phase element Zdiff was additionally in series with Rct), and (iii) appearance of the characteristic impedance related to Cl ion-participating reaction with alloy base at the later stage. From the linear part of ln Cct0.5 curve in the early immersion stage, the apparent diffusion coefficient of water was obtained. The diffusion coefficient of water and Cl ion through the coating was also calculated by the required time for diffusion of permeation species through the coating to the metal interface obtained from the simulation of EIS data by which the occurrence of characteristic impedance element(s) corresponding to special species arrival can be determined.  相似文献   

7.
Abstract

The effect of introducing MoO3 (Molybdenum oxide) nanoparticle in the epoxy coating was analyzed by EIS and SECM methods in natural seawater. The aminopropyl triethoxy silane (APTES) was treated with the nanoparticle for the proper dispersion and chemical interaction of nanoparticle with the epoxy resin. The introduction of MoO3 nanoparticle in the epoxy coating enhances the charge transfer resistance (Rct) as well as the film resistance (Rf). The observation of iron dissolution and oxygen consumption was carried out by applying the appropriate SECM tip potential in the MoO3 modified nanocomposite coated steel. The epoxy and epoxy-MoO3 nanocomposite-coated samples were used to study the mechanical, adhesion and anticorrosion properties. The analysis using SEM/EDX displayed that the enriched Mo was detected in the nanocomposite coated steel. The presence of the nano level corrosion product containing Mo was confirmed by FIB-TEM analysis. The high corrosion protection properties of the epoxy based nanocomposite coating was due to the complex nanoscale layer formed and chemical interactions of epoxy resin with surface-modified nanoparticle in nanocomposites.  相似文献   

8.
The paper reports on the corrosion behavior of carbon steel coated with thin SiOx-like oxide films. The SiOx-like coatings were deposited by plasma-enhanced chemical vapor deposition (PECVD) and their thickness was varied between 20 and 200 nm. The coated carbon steel interfaces were investigated for their corrosion protection efficiency when immersed in an aqueous saline solution of 3% NaCl. FTIR measurements and electrochemical impedance spectroscopy (EIS) experiments revealed that thin SiOx-like coating layers (20 nm thick) do not prevent the carbon steel from corrosion, while thicker silica layers (d ≥ 100 nm) protect efficiently carbon steel interfaces in highly saline media with a protection efficiency of about 96% for a 200 nm thick coating.  相似文献   

9.
Cathodic protection (CP) is usually combined with organic coatings to protect metallic structures exposed to seawater. However, the application of CP would enhance coating failure, such as cathodic delamination. To date, there has been few works characterizing the impedance models and water transport behaviors of cathodically polarized coating. In the present article, the analyses of impedance models and water uptake processes of chlorinated rubber coating subjected to various levels of cathodic protection were studied during coatings aging process by electrochemical impedance spectroscopy (EIS).Four distinguished electrical equivalent circuits (EEC) were used to fit the EIS plots of coatings without CP, while only two were employed for samples with CP. Since no corrosion was expected to take place at the metal/coating interface for sample which was polarized cathodically. Coating capacitance was used to investigate the sorption characteristic of water in coating since the increase of Cc was associated with water penetration into the coating. Compared with the sample without CP, those coating systems under CP have a smaller water diffusion coefficient and a further water uptake process after the saturation period.  相似文献   

10.
Comparisons of clear coating degradation in NaCl solution and pure water   总被引:1,自引:0,他引:1  
Organic coating's degradation behavior is essential to its corrosion protective function and has been widely studied. A main function of anti-corrosive organic coatings is acting as barriers to water uptake and ion diffusion. It is of great fundamental importance to study the influence of different working fluids on the degradation of organic coatings. In this study, a 3.5 wt% NaCl solution and the pure water are adopted as the working fluids based on their distinct properties. The commercially available polyurethane and epoxy based clear coatings are chosen for evaluation. The coating degradation is monitored by electrochemical impedance spectroscopy (EIS) measurement. Equivalent circuit models are employed to interpret the EIS spectra. The time evolution of coating resistance, capacitance, and water volume fraction of the coating is analyzed. Besides the fact that the coating's barrier property is deteriorated by the percolating of both NaCl solution and pure water, we also discover that pure water leads to faster coating degradation, demonstrated by a more substantial decrease in coating resistance, a more prominent increase in coating capacitance, and a greater saturated water volume fraction.  相似文献   

11.
《Ceramics International》2023,49(7):10354-10359
One of the critical issues in the application of supercritical water oxidation technology is to improve the corrosion resistance of reactor materials. Use of Al2O3 coating is one of the most promising methods to address this issue. In this study, thick NiAl/Al2O3 coatings on Inconel 625 substrates were prepared by a consecutive pack embedding and in-situ thermal oxidation process. The effect of aluminizing and oxidation temperature on phase structure and coating thickness is studied. Results show the diffusion of Al from the exterior to the interior of the alloy matrix to form intermetallic compounds between Al and metal elements in the matrix (Ni, Cr, Mo, etc.). Moreover, the coating thickness can reach above 300 μm at the aluminizing temperature of 950 °C. Increasing the aluminizing temperature above 950 °C will not increase the coating thickness further. After high temperature oxidation subsequently, only phases of NiAl and Al2O3 were detected. The formation of Al2O3 layer can be ascribed to the surface oxidization of Al. And the NiAl between the alloy substrate and Al2O3 coating provides an interfacial layer that can alleviate the crack or exfoliation of ceramic coating due to the mismatching of thermal expand coefficient. The thick NiAl/Al2O3 coatings prepared by aluminizing 950 °C and oxidizing at 1100 °C exhibit satisfied corrosion resistance after supercritical water test. This work would provide a significant method to develop advanced ceramics coating for the corrosion resistance of alloys.  相似文献   

12.
In this article, electrochemical behaviors and their topography observation for four organic coatings used in seawater, by using both electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM) methods to study environment behaviors of different coatings as well as the effects of their film formation, pigments, and fillers on anticorrosion behaviors, were measured. The results show that polyurethane, epoxy, and chlorinated rubber coatings all present one capacitive loop in their tested EIS which contains phenomenally only one time constant, whereas alkyd coating presents two capacitive semicircle arcs. With two capacitive loops, the capacitive semicircle in the high frequency range represents barrier layer property, but the semicircle in the low frequency range represents corrosion reaction of metals under the film. Polyurethane coating used in seawater has well anticorrosion property in seawater immersion test. The appearance features of different layers are visible different between different layers of tested coatings at their surface topography. The property of polyurethane paint film coated on metal is better than other layers, and film of alkyd coating has many pits at its surface by observing the layer's images. AFM photos imaged have also been used to further detail surface topography for four organic coatings, and to approve effects of topography of these coatings on its electrochemical behaviors, from two views of both height and phase modes. It is beneficial to explain deeply the environment behaviors and degradation mechanism of organic coatings. To further study failure of these organic coatings and dynamic processes of corrosion of metal under the film, two equivalent circuit models, according to these tested EIS, have been suggested to explain the corrosive kinetics of these four coatings. To polyurethane, epoxy, and chlorinated rubber coatings used in seawater which have good protection effects for substrate metal, the diffusion process for water, from their layer's surface to interface of film/metal, is mainly controlled factor for degradation. However, the electrochemical reaction process has may become a control procedure for corrosion of alkyd coated metal. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The Cr2O3 nanoparticles were modified with 3-amino propyl trimethoxy silane in order to obtain proper dispersion and increment compatibility with the polyurethane coating matrix. The nanocomposites prepared were applied on the St-37 steel substrates. The existence of 3-amino propyl trimethoxy silane on the surface of the nanoparticles was investigated by Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). Dispersion of the surface modified particles in the polyurethane coating matrix was studied by a field emission-scanning electron microscope (FE-SEM). The electrochemical impedance spectroscopy (EIS) and salt spray tests were employed in order to evaluate the corrosion resistance of the polyurethane coatings. Polarization test was done in order to investigate the corrosion inhibition properties of the Cr2O3 nanoparticle on the steel surface in 3.5 wt.% NaCl solution. The adhesion strengths of the coatings were evaluated by pull-off adhesion tester before and after 120 days immersion in 3.5 wt.% NaCl solution. FT-IR and TGA analyses revealed that surface modification of the nanoparticles with 0.43 silane/5 g pigment resulted in the greatest amount of silane grafting on the surface of particles. Results obtained from FE-SEM analysis showed that the surface modified nanoparticles dispersed in the coating matrix properly. Results obtained from EIS and salt spray analyses revealed that the surface modified particles enhanced the corrosion protection performance of the polyurethane coating considerably. The improvement was more pronounced for the coating reinforced with 0.43 g silane/5 g pigment. Moreover, the adhesion loss decreased in the presence of surface modified nanoparticles with 0.43 silane/5 g pigment.  相似文献   

14.
A protective composite coating on an AZ31B magnesium alloy was prepared by anodic oxidation to form an oxide layer, followed by single immersion in maleic anhydride-g-liquid polybutadiene (MALPB) solution to cover a polymer coating on top. As a low-molecular weight polymer with low viscosity, MALPB had a tendency to infiltrate into the pores and cracks in the anodic layer to fill the defects among oxides so that a compact layer could be formed after it was cured by its hardeners, as observed by scanning electron microscopy (SEM). This compact layer, which was composed of anodic oxides integrated with solidified MALPB, possessed thickness around 0.7 μm as detected by energy dispersive X-ray (EDX). The anodized, MALPB-coated AZ31B alloy exhibited enhancement in corrosion resistance superior to that separately coated by anodizing oxides or MALPB, as reflected by its much higher corrosion potentials (E ccor) and lower corrosion current density (i corr) in DC polarization tests. Based on electrochemical impedance spectroscopy (EIS) data, we conclude that the anticorrosive performance of the composite coating can be attributed to the barrier effects provided by different layers when the electrolyte passed through the MALPB layer, compact layer, and then the inner anodic layer before it reached the surface of Mg alloy, and that among them, the compact layer acted as a much more effective barrier to the electrolyte. The appearance of damaged areas on the composite coating surface after a much longer duration in a salt spray environment revealed that the life-span of the AZ31B Mg alloy could be greatly prolonged if the pores and cracks on the anodizing films were properly sealed by suitable polymers.  相似文献   

15.
WC coating was deposited on the polished and cleaned 316L stainless steel by Hot Filament Chemical Vapor Deposition (HFCVD) technique at 400°C and 500°C. Field Emission Gun Scanning Electron Microscope (FEG-SEM) was used to study the corrosion morphology of the WC coatings. Energy dispersive spectroscopy (EDS) was used to analyze the chemical composition of the coatings. Coating porosity was measured by immersion in water. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques were used to study the corrosion behavior of the coating in the solution of 1 mol/L H2SO4. Results showed that the WC coatings have a honeycomb microstructure where its porosity was increased at higher temperature of the sub-layer. Also, the WC coating significantly increases the corrosion resistance of 316L stainless steel. And increasing the sub-layer temperature in the HFCVD method reduces the corrosion resistance of the WC coating. Corrosion morphology was indicative of pitting corrosion of the WC coating.  相似文献   

16.
In this paper, commercial epoxy resin was chemically modified by different amounts of 3-glycidoxypropyltrimethoxysilane (GPTMS) monomer using an organotin compound as catalyst, aiming to improve the anti-corrosion performance of epoxy coatings on 2024-T3 aluminum alloy substrate. Electrochemical impedance spectroscopy (EIS) was used to evaluate the barrier properties against water permeation and protectiveness of silane-modified epoxy coatings. The results showed that all the modified coatings presented higher barrier performance and better corrosion performance than pure epoxy coating, which were characterized by higher charge transfer resistance (R ct) and lower double-layer capacitance (C dl) at the electrolyte/metal interface. The improvements in corrosion performance and wet adhesion of modified epoxy coatings were also observed by the Machu test and boiling water test, respectively. Interestingly, it was found that the glass-transition temperature (T g) of silane-modified epoxy coatings decreased only slightly during immersion in 3.5 wt% NaCl solution, in contrast with pure epoxy coating, which was observed to decrease significantly after water permeation. The corrosion performance of epoxy coatings was, thus, improved when the amount of chemically grafted silane monomer increased in the content range investigated in the present work.  相似文献   

17.
A freely oscillating torsion pendulum has been used to characterize the dynamic mechanical behavior of single polymer-coated optical fibers. The dynamical mechanical spectra of the polymer coatings exhibit a glass transition temperature (Tg), a cryogenic glassy-state relaxation (Tsec), and another cryogenic relaxation that is attributed to water present in the coating (TH2O). The shear modulus (G′) of the coating was computed from the shear moduli of the composite specimen and the core, assuming that the coating and core deform through the same angle on oscillation. The glassy-state modulus was the same for both thin and thick coatings, although the intensity of the damping peaks, as measured by the logarithmic decrement, increased with coating thickness. Comparison of the dynamic mechanical behavior of a coated optical fiber and of a free film cast from the same reactive components shows that the polymer itself can absorb water at ambient conditions and display a mechanical relaxation at cryogenic temperatures. The T., H2O and Tsec relaxations are coupled with respect to their intensities. Latent chemical reactivity was found in one coating above its maximum temperature of cure. In this, the temperature of cure determines the glass transition temperature.  相似文献   

18.
Organic coatings are prone to failure due to diffusion of the corrosion media toward the metal surface through the microcracks caused by internal and environmental stresses especially in immersion environment. In order to extend the service lifetime of organic coatings, we developed a self-curing epoxy resin/perfluorooctyl triethoxysilane (POTS)-loaded mesoporous silica nanoparticles (MSNs) nanocomposite (SEP/POTS-MSNs) coating, by embedding the POTS-loaded MSNs (POTS-MSNs) into an SEP resin. Fourier transform infrared, X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller analyses were conducted to confirm the successful loading of POTS in the MSNs. Thermogravimetric analysis was used to characterize the loading amount of POTS. The corrosion protection properties of the SEP, SEP/MSNs, and SEP/POTS-MSNs coatings were evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests. The results indicate that the SEP/POTS-MSNs coating with only 30 μm thickness showed corrosion resistance with Z f = 0.01 Hz of 4.7 × 108 Ω/cm2 and icorr of 0.026 nA/cm2 after 58 hr of immersion in boiling water, which were both two orders of magnitude higher than those of the SEP coating. The SEP/POTS-MSNs coating combines the advantages of the SEP coating and the POTS-MSNs. We anticipate that the SEP/POTS-MSNs coating has promising potential for use in immersion environments.  相似文献   

19.
The goal of the current work was to determine if electrochemical impedance spectroscopy (EIS) testing of a series of coated but unexposed metal panels could predict the corrosion results of other sections of the same coated panels that were subjected to both continuous and cyclic corrosion testing. Variables included metal, pretreatment, primer, and topcoat. EIS results were shown to be strongly dependent upon the time-of-residence in the electrochemical cell prior to commencement of testing, and to the choice of electrolyte used in the cell. Good correlations between EIS and corrosion testing were seen for topcoat effects, but not for pretreatment effects. EIS results appear to relate mostly to barrier properties rather than electrochemical properties of coatings. It is suggested that the variation seen in EIS solution resistance values (Rs) can be utilized to quantify total system error. Total error was estimated by three techniques: total Rs variation, panel replicate variation, and EIS reading replication. The three approaches yielded similar results: total error for equivalent circuit components expressed in log10 form was on the order of 50%, expressed as percent standard deviation.  相似文献   

20.
Scanning electrochemical microscopy (SECM) is an excellent technique to detect electrochemical processes with high spatial resolution. In this work, the effect of silicon (Si) nanoparticles on the corrosion protection performance of epoxy-coated steel was examined by electrochemical impedance spectroscopy (EIS) and SECM analysis. The EIS was performed in continuous immersion in 0.1?M NaCl(aq) solution. The addition of Si nanoparticles increased the coating film resistance (R f) and the charge transfer resistance (R ct) of coated steel. SECM mapping and line scan analysis was performed in order to estimate the coating performance with Si nanoparticles in 0.1?M NaCl(aq) solution. SECM results indicated that the tip current at ?0.70?V was decreased by the addition of Si nanoparticles in epoxy film. These results suggested that the dissolved oxygen (DO) was consumed by anodic dissolution of Si nanoparticles. Surface analysis showed that the Si was enriched at the scratched region of the coated steel after a corrosion test. From these results, Si was dissolved as Si n+ and transferred to the scratched area, and then consumed the DO in the solution. Thus, the anodic dissolution of Fe at the scratched area was suppressed by the Si nanoparticles, which implies the sacrificial effect of Si from the coating against the steel corrosion. Hence, it was concluded that the Si nanoparticles had a beneficial effect on enhancing the corrosion resistance of the coated steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号