首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
FCVA制备超薄类金刚石薄膜的拉曼光谱分析   总被引:1,自引:0,他引:1  
采用FCVA方法制备厚度分别为50nm、30nm、10nm、5nm、2nm的DLC薄膜,利用可见光拉曼光谱分析薄膜的G峰位置、Id/g和Ag/Ad,发现随着薄膜厚度的减小,Id/Ig不断增大,AgAd减小,G峰位置向低波数方向移动.紫外拉曼光谱分析结果表明,薄膜厚度减薄会减小It/Lg使T峰位置向高波数方向移动.结合两种不同波长的拉曼光谱进行分析,G峰偏移量随薄膜厚度减小呈下降趋势;随薄膜厚度的减小,FCVA法制备的类金刚石薄膜中的sp3键含量减少,同时有序化的sp2团簇增加.EELS结果也证实,薄膜厚度的减小会减少薄膜中sp3键的含量.对于50nm和30nm的非晶碳膜,拉曼光谱分析的结果与薄膜硬度和内应力实际测试结果存在一致的对应关系.  相似文献   

2.
FCVA法沉积的超薄类金刚石薄膜的结构与热稳定性   总被引:1,自引:0,他引:1  
采用FCVA方法沉积了厚度分别为2nm、5nm、10nm和30nm的类金刚石薄膜.在氩气保护下对类金刚石薄膜进行了180、300、400和600℃,保温6h的退火处理.用Raman光谱和宽光谱变角度椭偏仪研究了DLC薄膜的结构和热稳定性.实验结果表明,随着薄膜厚度增大,FCVA法沉积的DLC薄膜中的sp3键含量增加,薄膜热稳定性逐渐改善.当DLC薄膜的厚度为30nm时,薄膜中的sp3键含量达到最高值,薄膜具有最好的热稳定性.当退火温度为600℃时,厚度为2nm和5nm的DLC薄膜结构由非晶态转变为微晶态;厚度为10nm和30nm的DLC薄膜结构发生转变但仍保持非晶态.随着退火温度的升高,各个厚度的DLC薄膜的光学带隙Eg均先增大后减小.  相似文献   

3.
利用强流脉冲离子束 (High intensitypulsedionbeam HIPIB)烧蚀等离子体技术在Si(1 0 0 )基体上沉积类金刚石 (Dia mond likecarbon DLC)薄膜 ,基片温度的变化范围从 2 5℃ (室温 )到 40 0℃。利用Raman谱、X射线光电子谱 (XPS)、X射线衍射(XRD)和原子力显微镜 (AFM)研究基片温度对DLC薄膜的化学结合状态、表面粗糙度、薄膜显微硬度和薄膜内应力的影响。根据XPS和Raman谱分析得出 ,基片温度低于 30 0℃时 ,sp3C杂化键的含量大约在 40 %左右 ;从 30 0℃开始发生sp3C向sp2 C的石墨化转变。随着沉积薄膜时基片温度的提高 ,DLC薄膜中sp3C的含量降低 ,由 2 5℃时 42 .5 %降到 40 0℃时 8.1 % ,XRD和AFM分析得出 ,随着基片温度的增加 ,DLC薄膜的表面粗糙度增大 ,薄膜的纳米显微硬度降低 ,摩擦系数提高 ,内应力降低。基片温度为 1 0 0℃时沉积的DLC薄膜的综合性能最好 ,纳米显微硬度 2 2GPa ,表面粗糙度为 0 75nm ,摩擦系数为 0 .1 1 0。  相似文献   

4.
利用强流脉冲离子柬(High-intensity pulsed ion beam-HIPIB)烧蚀等离子体技术在Si(100)基体上沉积类金刚石(Diamond-like carbon-DLC)薄膜,基片温度的变化范围从25℃(室温)到400℃。利用Raman谱、X射线光电子谱(XPS)、X射线衍射(XRD)和原子力显微镜(AFM)研究基片温度对DLC薄膜的化学结合状态、表面粗糙度、薄膜显微硬度和薄膜内应力的影响。根据XPS和Raman谱分析得出,基片温度低于300℃时,sp3C杂化键的含量大约在40%左右;从300℃开始发生sp3C向sp2C的石墨化转变。随着沉积薄膜时基片温度的提高,DLC薄膜中sp3C的含量降低,由25℃时42.5%降到400℃时8.1%,XRD和AFM分析得出,随着基片温度的增加,DLC薄膜的表面粗糙度增大,薄膜的纳米显微硬度降低,摩擦系数提高,内应力降低。基片温度为100℃时沉积的DLC薄膜的综合性能最好,纳米显微硬度22GPa,表面粗糙度为0.75nm,摩擦系数为0.110。  相似文献   

5.
钛离子注入类金刚石碳膜的结构与性能的研究   总被引:7,自引:0,他引:7  
柳翠  苟伟  牟宗信  李国卿 《功能材料》2005,36(2):301-303
使用金属离子注入的方法制备了 Ti掺杂的DLC膜。采用原子力显微镜观察了薄膜的表面形貌,Ti掺杂后 DLC 膜的表面粗糙度明显减小,表面光洁度增加,颗粒细化。拉曼光谱分析表明实验获得的薄膜是典型的DLC膜,掺杂Ti后的 DLC膜的拉曼光谱存在明显的肩峰,DLC膜化学结构中的sp2 组分增加,sp3 组分减少。透射电子显微镜分析表明Ti注入后有TiC纳米晶形成。掺入Ti的 DLC膜的硬度从 14GPa增加到 20GPa。Ti 掺杂后的 DLC 膜的摩擦系数(0.15)明显低于未掺杂的DLC膜的摩擦系数(0.21),Ti离子注入有助于提高薄膜的抗磨损性。  相似文献   

6.
应用线性离子束复合磁控溅射技术在不锈钢和硅片基体上制备DLC膜,研究了基体偏压和过渡层的厚度和结构对DLC薄膜结构和性能的影响。结果表明,在过渡层相同偏压为-200 V的条件下,薄膜中的sp3键含量更低,但是薄膜结构致密性的提高使其硬度和膜基结合力反而提高;在偏压为-200V的条件下,随着过渡层厚度及层数的增加DLC薄膜中sp3含量均降低,同时过渡层和多层薄膜的硬度减小;在偏压为-100V条件下,过渡层厚度和层数对DLC薄膜sp3的含量没有明显的影响。当过渡层厚度为1.7μm、结构为Cr/CrC时,在11Cr17不锈钢基体上可制备出厚度为4.92μm、硬度为29.4 GPa、摩擦系数小于0.1、结合力高于70 N综合性能最佳的DLC薄膜。  相似文献   

7.
利用中频脉冲非平衡磁控溅射技术在不同的基体温度下制备了类金刚石(DLC)薄膜,采用Raman光谱、X射线光电子能谱(XPS)、纳米压痕测试仪、椭偏仪对所制备DLC薄膜的微观结构、机械性能、光学性能进行了分析。Raman光谱和XPS结果表明,当基体温度由50℃增加到100℃时,DLC薄膜中的sp3杂化键的含量随基体温度的升高而增加,当基体温度超过100℃时,DLC薄膜中的sp3杂化键的含量随基体温度的升高而减少。纳米压痕测试表明,DLC薄膜的纳米硬度随基体温度的增加先增加而后减小,基体温度为100℃时制备的薄膜的纳米硬度最大。椭偏仪测试表明,类金刚石薄膜的折射率同样随基体温度的增加先增加而后减小,基体温度为100℃时制备的薄膜的折射率最大。以上结果说明基体温度对DLC薄膜中的sp3杂化键的含量有很大的影响,DLC薄膜的纳米硬度、折射率随薄膜中的sp3杂化键的含量的变化而变化。  相似文献   

8.
为了探讨膜厚对四面体非晶碳薄膜拉曼结构表征和内应力的影响规律,进而确定应力与拉曼光谱之间的关系,采用过滤阴极真空电弧技术以相同的工艺条件在P(100)单晶抛光硅衬底上制备了从3nm~350nm不同厚度的四面体非晶碳薄膜。利用表面轮廓仪和原子力显微镜测试膜厚,表面轮廓仪确定曲率半径并计算薄膜应力,共聚焦拉曼光谱表征薄膜的结构细节。实验发现,随着膜厚的增加,四面体非晶碳薄膜的应力持续下降,当膜厚超过30nlll时,应力的下降趋势变得平缓,并保持在小于5GPa的较低水平。随着膜厚的增加,可见光拉曼光谱中衬底硅的一阶和二阶谱峰强度逐渐降低,在50nm~80nm膜厚范围,半高宽最窄,峰强最高,能够最有效地获得拉曼结构信息。随着膜厚的增加和应力的下降,非晶碳一阶谱峰的峰位表现为逐渐向低频偏移。  相似文献   

9.
射频磁控溅射制备类金刚石薄膜的特性   总被引:1,自引:2,他引:1  
采用射频磁控溅射技术,用高纯石墨靶在单晶硅片、抛光不锈钢片上制备了类金刚石薄膜(DLC)。采用Raman光谱、原子力显微镜、显微硬度分析仪,表征了类金刚石薄膜的微观结构、表面形貌、硬度。结果表明,制备的类金刚石薄膜中含sp2、sp3杂化碳键,具有典型的类金刚石结构特征。计算表明,对应sp3杂化碳原子含量的ID1IG为3.18;薄膜的表面十分平整光滑,表面粗糙度极低,平均粗糙度Ra为0.17 nm;薄膜硬度可以高达30.8 GPa。  相似文献   

10.
使用等离子体浸没离子注入与沉积(PIII&D)技术在轴承钢基体表面合成类金刚石(DLC)薄膜,研究了薄膜的结构和性能,结果表明,所制备的DLC薄膜主要是由金刚石键(sp3)和石墨键(sp2)组成的混合无定形碳,且sp3键含量大于10%,DLC膜层致密均匀,与基体结合良好,DLC膜具有很高的硬度和杨氏模量,分别达到40 GPa和430 GPa;其最低摩擦系数由基体的0.87下降到0.2,被处理薄膜试件在90%置信区间下的L10、L50、La和平均寿命L较基体分别延长了10.1倍、4.2倍、3.5倍和3.4倍,PIII&D轴承钢滚动接触疲劳寿命的分散性得到了显著改善.  相似文献   

11.
A model is developed for quantifying the thickness of thin coatings and wear scars using Raman spectroscopy. The model, which assumes that both incident and Raman light obey Beer's law, was applied to Raman spectra from a diamond-like carbon (DLC) coating containing Si and O, known as DLN (diamond-like nanocomposite). The coatings ranged in thickness from 10 nm to 2 μm, according to stylus profilometry. Systematic variations in the Raman carbon (G band) and Si (1st order) peak intensities vs. thickness were found. Fits to the model gave an optical mean free path of λ250 nm for DLN. This value is in good agreement with optical absorption coefficient values of other DLC films. Thickness profiles of wear tracks in the coatings determined by the model compared well with depths determined by profilometry.  相似文献   

12.
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm~(-1) and a broad peak at 1600 cm~(-1), which indicatedthat the films were DLC films.  相似文献   

13.
Diamond-like carbon films (DLC) and silicon doped diamond-like carbon films were deposited on Ni substrate by cathodic micro-arc discharge at room temperature in aqueous solutions. The deposit potential was 130 V. The structure of the films was characterized by a scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Raman spectra and XPS analysis demonstrated that the films were diamond-like carbon clearly. SEM observation showed that the DLC films were uniform and the thickness was about 200 nm. Potentiodynamic polarization curve indicated the corrosion resistance of the Ni substrate was markedly improved by DLC films.  相似文献   

14.
In this study diamond-like carbon (DLC) films were deposited by a dual-mode (radio frequency/microwave) reactor. A mixture of hydrogen and methane was used for deposition of DLC films. The film structure, thickness, roughness, refractive index of the films and plasma elements were investigated as a function of the radio frequency (RF) and microwave (MW) power, gas ratio and substrate substance. It was shown that by increasing the H2 content, the refractive index grows to 2.63, the growth rate decreases to 10 (nm/min) and the surface roughness drops to 0.824 nm. Taking into consideration the RF power it was found that, as the power increases, the growth rate increases to 11.6 (nm/min), the variations of the refractive index and the roughness were continuously increasing, up to a certain limit of RF power. The Raman G-band peak position was less dependent on RF power for the glass substrate than that of the Si substrate and a converse tendency exists with increasing the hydrogen content. Adding MW plasma to the RF discharge (dual-mode) leads to an increase of the thickness and roughness of the films, which is attributed to the density enhancement of ions and radicals. Also, optical emission spectroscopy is used to study the plasma elements.  相似文献   

15.
Chemical vapor deposition (CVD) of hard diamond-like carbon (DLC) films on silicon (100) substrates from methane was successfully carried out using a radio frequency (r.f.) inductively coupled plasma source (ICPS). Different deposition parameters such as bias voltage, r.f. power, gas flow and pressure were involved. The structures of the films were characterized by Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. The hardness of the DLC films was measured by a Knoop microhardness tester. The surface morphology of the films was characterized by atomic force microscope (AFM) and the surface roughness (Ra) was derived from the AFM data. The films are smooth with roughness less than 1.007 nm. Raman spectra shows that the films have typical diamond-like characteristics with a D line peak at 1331 cm−1 and a G line peak at 1544 cm−1, and the low intensity ratio of ID/IG indicate that the DLC films have a high ratio of sp3 to sp2 bonding, which is also in accordance with the results of FTIR spectra. The films hardness can reach approximately 42 GPa at a comparatively low substrate bias voltage, which is much greater than that of DLC films deposited in a conventional r.f. capacitively coupled parallel-plate system. It is suggested that the high plasma density and the suitable deposition environment (such as the amount and ratio of hydrocarbon radicals to atomic or ionic hydrogen) obtained in the ICPS are important for depositing hard and high quality DLC films.  相似文献   

16.
Thin films of amorphous diamondlike carbon (a:DLC) were deposited on GaAs solar cells, with and without antireflecting coating. The films were deposited by decomposition of CH4 plasma using a r.f. generator (13.56 MHz). The reflected light from these cells, in the visible light, decreased after deposition of a:DLC film thickness (from 33% for t=0 nm to 14% for t=60 nm) which indicates antireflecting properties. The IV measurements show an increase of the short circuit current (Isc) with films thickness up to t40–60 nm, where it reaches a maximum and then decreases for higher thickness (t>60 nm). The efficiency (η) of the cells, as a function of the a:DLC thickness, shows a maximum value of 15% for t=50 nm. It was also shown, that the a:DLC films is a useful material as a protecting material for cells for operation in an abrasive environment. In abrasive environment, the efficiency of the coated cell maintains the level of about 12% whereas the efficiency of uncoated cells drop sharply from 15.5% to 6%.  相似文献   

17.
Diamond-like carbon (DLC) nanofilms with thickness varied from under one hundred to a few hundred nanometers have been successfully deposited on alumina substrates by microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. To obtain dense continuous DLC nanofilm coating over the entire sample surface, alumina substrates were pre-treated to enhance the nucleation density. Raman spectra of DLC films on samples showed distinct diamond peak at around 1332 cm(-1), and the broad band of amorphous carbon phase at around 1550 cm(-1). Full width at half maximum height (FWHM) values indicated good formation of diamond phase in all films. The result of nano-indentation test show that the hardness of alumina samples increase from 7.3 +/- 2.0 GPa in uncoated samples to 15.8 +/- 4.5-52.2 +/- 2.1 GPa in samples coated with DLC depending on the process conditions. It is observed that the hardness values are still in good range although the thickness of the films is less than a hundred nanometer.  相似文献   

18.
Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.  相似文献   

19.
本文用侧向力显微镜(Lateral Force Microscope,LFM)研究不同厚度类金刚石(Diamond-Like Carbon,DLC)膜的摩擦性能.对厚度为153.4 nm,64.9 nm,12.07nm DLC膜摩擦力和法向力的关系进行研究,实验表明施加较低载荷,摩擦力和法向力成线性关系,符合Amontons's定律;而膜厚为4.48nm、2.78 nm样品由于粗糙度、峰态和偏态的差异导致摩擦力和载荷关系不明显,研究指出针尖和薄膜的表面接触可以简化为Tomlinson模型,借助原子晶格振动的无损摩擦机理解释了这一现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号