首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium tin oxide was deposited on a glass (soda lime glass) by radiofrequency sputtering system at different sputtering gas (argon/oxygen 90/10%) pressures (20-34 mTorr) at room temperature. The sputtering rate was affected by the sputtering gas pressure. The optimum sputtering gas pressure was found to be 27 mTorr. The samples at different thicknesses (168, 300, 400, 425, 475, 500 and 630 nm) were deposited on the substrate. Transparency, electrical conductivity and surface roughness of the films were characterized. The samples were annealed at 350, 400 and 450 degrees C to evaluate annealing process effects on the concerned parameters and, therefore, the above-mentioned measurements were repeated again. The films exhibited reasonable optical transmittance and electrical conductivity and greatly improved after annealing. The characterization was focused on the scanning of the film surfaces before and after annealing, which has a prominent effect on the optical properties of the films. Film surfaces were scanned by scanning probe microscopy in contact atomic force mode. The most consideration was devoted to image analysis.  相似文献   

2.
Frictional effects in atomic force microscopy (AFM) of Langmuir-Blodgett films of 1, 2-dipalmitoyl-snglycero-phosphoglycerol were examined. Height measurements of the Langmuir layers are strongly influenced by the orientation of the cantilevers used in AFM relative to the sample. A simple model is used to describe the frictional effects and to calculate the real height of the monolayers.  相似文献   

3.
Atomic force microscopy has been used to measure adhesion and friction forces at the interface between an oxidized metal probe tip and amorphous carbon films of varying hydrogen contents (12.3–39.0 atomic percent hydrogen). The interface of an oxide surface and a hard carbon coating models the unlubricated head-disk interface of current hard disk products. Adhesion forces normalized by the radius of curvature of the contacting tip range from 1.09 to 8.53 N/m. Coefficients of friction values, measured as the slope of the friction versus load plot, range from 0.33 to 0.87. A trend of increasing adhesion forces and coefficients of friction is observed for increasing hydrogen content in the films. We attribute the increase in adhesion and friction to increases in the surface free energy of the carbon films with the incorporation of hydrogen.  相似文献   

4.
Gallium nitride (GaN) films were grown on sapphire and zinc oxide (ZnO) single crystal substrates using plasma‐assisted molecular beam epitaxy. As ZnO for GaN have a better lattice match, the coverage ratio of the GaN (002) plane on the ZnO substrate was significantly higher by about 45%. According to conducting atomic force microscopy and scanning surface potential microscopy measurements, the surface of GaN films grown on the ZnO substrate had two excellent physical characteristics: (a) an 18% reduction of the high contact current region, and (b) a highly uniform work function distribution. Therefore, for future applications in GaN‐based light‐emitting diodes, the use of ZnO as a substrate will prolong the luminescence lifetime and enhance the luminescent monochromaticity.  相似文献   

5.
Cavallini A  Cavalcoli D 《Scanning》2008,30(4):358-363
Surface photovoltage spectroscopy (SPS) and conductive atomic force microscopy (C-AFM) have been used for the characterization of nanocrystalline hydrogenated Si (nc-Si:H). This is a promising material both for silicon-based opto-electronics as well as for photovoltaic applications. Notwithstanding its interesting properties many issues regarding the material electronic and optical properties are not completely understood. The present contribution reports microscopic and spectroscopic analyses of nc-Si:H films grown for photovoltaic applications by low-energy plasma-enhanced chemical vapor deposition technique. Electronic levels associated with defect states were investigated by SPS, whereas the conduction mechanism at a microscopic level was investigated by C-AFM.  相似文献   

6.
Recently we reported a simple method for obtaining both monolayer thickness and surface patterning using self-assembled monolayers (SAMs). Here we presented a straightforward method for controlling the formation of SAMs over surfaces useful for both chemical and biological applications. Atomic force microscopy (AFM) has been used to investigate the growth mechanism and formation of octadecylsiloxane (ODS) films obtained using a less-reactive silane; octadecyltrimethoxysilane (OTMS). SAMs formation from both OTMS and octadecyltrichlorosilane (ODTS) differ in the hydrolysis step where ODTS results in hydrochloric acid formation, which may affect the delicate features on surfaces. On the other hand, OTMS does not show this behavior. In contrast to monolayer formation from chlorosilane precursors, methoxysilane SAMs have been studied less extensively. Our observations highlight the importance of controlling water content during the formation of ODS monolayers in order to get well-ordered SAMs. We have also seen that, like ODTS, OTMS exhibits monolayer growth through an island expansion process but with a comparatively slow growth rate and different island morphology. The average height of islands, surface coverage, contact angle and root-mean-square (RMS) roughness increase with OTMS adsorption time in a consecutive manner.  相似文献   

7.
Polysaccharide properties probed with atomic force microscopy   总被引:7,自引:0,他引:7  
In recent years, polysaccharides have been extensively studied using atomic force microscopy (AFM). Owing to its high lateral and vertical resolutions and ability to measure interaction forces in liquids at pico‐ or nano‐Newton level, the AFM is an excellent tool for characterizing biopolymers. The first imaging studies showed the morphology of polysaccharides, but gradually more quantitative image analysis techniques were developed as the AFM grew easier to use in aqueous liquids and in non‐contact modes. Recently, AFM has been used to stretch polysaccharides and characterize their physicochemical properties by application of appropriate polymer stretching models, using a technique called single‐molecule force spectroscopy. From application of such models as the wormlike chain, freely jointed chain, extensible‐freely jointed chain, etc., properties such as the contour length, persistence length and segment elasticity or spring constant can be calculated for polysaccharides. The adhesion between polysaccharides and surfaces has been quantified with AFM, and this application is particularly useful for studying polysaccharides on microbial and other types of cells, because their adhesion is controlled by biopolymer characteristics. This review presents a synthesis of the theory and techniques currently in use to probe the physicochemical properties of polysaccharides with AFM.  相似文献   

8.
Conducting atomic force microscopy and scanning surface potential microscopy were adopted to investigate the nanoscale surface electrical properties of N‐doped aluminum zinc oxide (AZO:N) films that were prepared by pulsed laser deposition (PLD) at various substrate temperatures. Experimental results demonstrated that when the substrate temperature is 150°C and the N2O background pressure is 150 mTorr, the N‐dopant concentration on the surface is optimal. In addition, the root‐mean‐square roughness value of the film surface, the low contact current (<400 nA) conducting region as a percentage of the total area, and the mean work function value are 1.43 nm, 96.9%, and 4.88 eV, respectively, all of which are better than those of the optimal AZO film made by PLD. This result indicates that N‐doped AZO films are better for use as window materials in polymer light‐emitting diodes. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
C-banding visualized by atomic force microscopy   总被引:2,自引:0,他引:2  
C-banding is a method used for studying chromosome rearrangements near centromeres and for investigating polymorphisms. In human chromosomes, the C-bands are located at the centromere of all the chromosomes and the distal long arm of the Y chromosome. In this study, we aimed to detect the structural changes in chromosomes during the stages of C-banding by atomic force microscopy. We observed crater-like structures in the chromosomes after 2xSSC (saline sodium citrate) treatment and measured the relative difference between the heights of chromatid and centromere of the chromosomes. Results showed that the relative difference was 3 nm in chromosomes 1, 9, 16, and Y, whereas in the other chromosomes this value was 11.6 nm. After Giemsa staining, the relative difference increased by a factor of 16 in chromosomes 1, 9, 16, and Y. The other chromosomes showed no such increase, which is in accordance with our suggestion that nonhiston proteins associated with DNA in constitutive heterochromatin can make the constitutive heterochromatin resistant to C-banding.  相似文献   

10.
This work describes an analysis of titanium dioxide (TiO2) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2/Ar atmosphere in correlation with three‐dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as‐deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 μm × 0.95 μm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178‐2:2012 and American Society of Mechanical Engineers (ASME) B46.1‐2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.  相似文献   

11.
Conducting atomic force microscopy and scanning surface potential microscopy were used to study the local electrical properties of gallium‐doped zinc oxide (GZO) films prepared by pulsed laser deposition (PLD) on a polyimide (PI) substrate. For a PLD deposition process time of 8 min, the root‐mean‐square roughness, coverage percentage of the conducting regions, and mean work function on the GZO surface were 2.33 nm, 96.6%, and 4.82 eV, respectively. When the GZO/PI substrate was used for a polymer light‐emitting diode (PLED), the electroluminescence intensity increased by nearly 20% compared to a standard PLED, which was based on a commercial‐ITO/glass substrate. Microsc. Res. Tech. 76:783–787, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Determination of a translocation chromosome by atomic force microscopy   总被引:1,自引:0,他引:1  
Ergun MA  Karaoguz MY  Ince GD  Tan E  Menevse A 《Scanning》2002,24(4):204-206
Atomic force microscopy (AFM) has been used to study the translocation involving chromosomes 11 and 13. An amniocentesis procedure was performed at 18 weeks of pregnancy on a familial balanced translocation carrier mother whose karyotype was 46,XX,t(11;13) (q23;q34). After harvesting the tissue cultures, light microscopy studies (LM) have indicated that the fetus had the same translocation. A 0.3 microm gap region on the derivative chromosome 13 was determined by AFM; it was equivalent to a mid-sized G-band. The enhanced resolution of AFM with respect to its line measure analysis and three-dimensional image capture capability has allowed an extension and reconsideration of conclusions about chromosomal aberrations based on the study of LM preparations. In this manner, chromosomal disorders will be studied at nanoscale to help in the planning of new therapy strategies.  相似文献   

13.
Bai GF  Petrenko VF  Baker I 《Scanning》2001,23(3):160-164
A combination of electric force microscopy (EFM) and noncontact atomic force microscopy (AFM) was used to study microscratching-induced dislocations in sphaleritic ZnS single crystals. Dislocation bands predominantly consisting of either anion-type (S) or cation-type (Zn) dislocations were induced by scratching along either [111] or [111] on a (110) surface. A significant difference of local distortions in electrical potential between the S(g) and Zn(g) dislocation bands was observed from the EFM images. Electric charges of these dislocations were determined quantitatively and the results were compared with theoretical models.  相似文献   

14.
Lin ZC  Liu SC 《Scanning》2008,30(5):392-404
This study constructs a contact-mode atomic force microscopy (AFM) simulation measurement model with constant force mode to simulate and analyze the outline scanning measurement by AFM. The simulation method is that when the probe passes the surface of sample, the action force of the atom of sample received by the atom of the probe can be calculated by using Morse potential. Through calculation, the equivalent force on the cantilever of probe can be acquired. By using the deflection angle equation for the cantilever of probe developed and inferred by this study, the deflection angle of receiving action force can be calculated. On the measurement point, as the deflection angle reaches a fixed deflection angle, the scan height of this simulation model can be acquired. By scanning in the right order, the scan curve of the simulation model can be obtained. By using this simulation measurement model, this study simulates and analyzes the scanning of atomic-scale surface outline. Meanwhile, focusing on the tip radii of different probes, the concept of sensitivity analysis is employed to investigate the effects of the tip radius of probe on the atomic-scale surface outline. As a result, it is found from the simulation on the atomic-scale surface that within the simulation scope of this study, when the tip radius of probe is greater than 12 nm, the effects of single atom on the scan curve of AFM can be better decreased or eliminated.  相似文献   

15.
Most advances in atomic force microscopy (AFM) have been accomplished in recent years. Previous attempts to use AFM to analyze the organization of pathogenic protozoa did not significantly contribute with new structural information. In this work, we introduce a new perspective to the study of the ultrastructure of the epimastigote form of Trypanosoma cruzi by AFM. Images were compared with those obtained using field emission scanning electron microscopy of critical point dried cells and transmission electron microscopy of negative stained detergent-extracted and air-dried cells. AFM images of epimastigote forms showed a flagellum furrow separating the axoneme from the paraflagellar rod (PFR) present from the emergence of the flagellar pocket to the tip of the flagellum. At high magnification, a row of periodically organized structures, which probably correspond to the link between the axoneme, the PFR and the flagellar membrane were seen along the furrow. In the origin of the flagellum, two basal bodies were identified. Beyond the basal bodies, small periodically arranged protrusions, positioned at 400 nm from the flagellar basis were seen. This structure was formed by nine substructures distributed around the flagellar circumference and may correspond to the flagellar necklace. Altogether, our results demonstrate the importance of the application of AFM in the structural characterization of the surface components and cytoskeleton on protozoan parasites.  相似文献   

16.
Graham  J.F.  McCague  C.  Norton  P.R. 《Tribology Letters》1999,6(3-4):149-157
In this paper we present recent results from an on‐going effort to characterize the nanomechanical properties of a variety of tribochemical, antiwear films through the use of modern scanning probe techniques. The two types of antiwear wear films studied, derived from zinc dialkyl dithiophosphate (alkyl ZDDP) and zinc diaryl dithiophosphate (aryl ZDDP), were chosen because they possess significantly different wear characteristics. High resolution AFM topographic images showed significant differences between the two types of films. More interestingly, high resolution imaging and quantitative mechanical properties testing using the interfacial force microscope (IFM), revealed different elastic and plastic properties between the two types of films; in addition each type of film possessed several distinct regions with respect to mechanical properties. The maximum values for elastic modulus and hardness were located on the highly loaded regions of the alkyl ZDDP films which exhibited the best tribological performance. In contrast, the aryl ZDDP films, which exhibited poorer antiwear behaviour, were devoid of such resilient regions. Our results correlate the macroscopic wear behavior of the tribochemical films to differences in the mechanical properties on a nanometer scale. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The numerical abnormalities of human metaphase chromosomes, fixed according to standard procedures for optical microscopy but not treated for banding, were detected by atomic force microscopy (AFM). High-resolution AFM imaging of chromosomes in trisomy 13, 21, and Klinefelter syndrome can be compared directly with the traditional optical image. The unbanded metaphase chromosomes, including the extra ones in trisomic patients showed a structural pattern very similar to G-banding. Comparison of AFM images with light microscopic data allows the identification of specific chromosomes, and images of chromosomes showing numerical and structural abnormalities can then be analysed.  相似文献   

18.
The mechanism of G-banding detected by atomic force microscopy   总被引:3,自引:0,他引:3  
Sahin FI  Ergün MA  Tan E  Menevşe A 《Scanning》2000,22(1):24-27
The morphologic changes occurring in human chromosomes during G-banding by trypsin treatment on the same metaphase were followed with the aid of an atomic force microscope (AFM). It was found that trypsin treatment alone caused a pattern of collapse in the chromosomes that was clearly dependent on the duration of trypsinization. The progressive pattern of collapse first indicated the loss of internal differentiation between chromatids, then bands, and finally all internal structures, except for edges running around the chromosomes' perimeter. When stained with Giemsa, the collapsed chromosomes partly regained their original form, and transverse ridges appeared that correspond to G-positive band regions. However, the treatment of fixed chromosomes with trypsin for 42 s diminished the chromosomal edges, and the z-dimensions could not be measured even with the subsequent application of Giemsa.  相似文献   

19.
Although structural information of mitotic chromosomes has been accumulated, little information is available for meiotic chromosome structures. Here, we applied atomic force microscopy (AFM) to investigate the ultrastructures of the silkworm, Bombyx mori, meiotic pachytene chromosome in its native state with nanometer scale resolution. Two levels of DNA folding were observed on the meiotic chromosome surface, 50-70 nm granules, which were considered to be 30 nm chromatin fibers, and spherical protrusions of 400-600 nm, which were considered to be chromomeres and arranged on the surface of the chromosome parallel to the chromosome longitudinal axis. These observations suggested that AFM study is an excellent approach for obtaining information concerning the silkworm pachytene chromosome higher order structure.  相似文献   

20.
The influence of environmental factors on dimensional measurements of atomic force microscopy (AFM) was investigated experimentally. Measurements were taken with environmental control over a whole AFM chamber and a local sample chamber to highlight the influence of working conditions on the instrument itself. Both temperature and humidity were found to have a significant impact on pitch measurements of a two‐dimensional grating. The effect of temperature on the behavior of the microscope itself is generally larger than the thermal expansion or contraction of the sample. The effect of humidity was further determined to be relevant to the scan direction and velocity. For precise AFM dimensional measurements, the possible influences of temperature and humidity must be carefully considered. Microsc. Res. Tech. 78:562–568, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号