首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation behavior of Ni and Ni-3, 6, and 10Al alloys at 800°C in an N2–O2 gas mixture was investigated. The mass gain of each alloy depended on both the oxidation periods and Al content. NiO scale was formed on all alloy substrates accompanied by internal oxides of Al2O3. Many cavities were formed at the NiO/substrate interface at shorter oxidation times, and these cavities were found to be filled by metallic Ni(Al) from the matrix in the internal-oxidation zone by the development of internal oxides. The filling of cavities by Ni(Al) was more significant on higher Al alloys, which had a higher density of internal Al2O3. Once metallic Ni(Al) formed along the entire NiO/substrate interface, the oxidation kinetics became the same as pure Ni. It was concluded that pure Ni filling the cavities at the interface provided a diffusion path of Ni from the substrate to the NiO scale, and that controlled the oxidation kinetics.  相似文献   

2.
A Ni3Al-based alloy, the composition of which was Ni-16.0% Al-7.8% Cr-1.3% Zr-0.8% Mo-0.025%B, was cyclically oxidized in the temperature range of 900 to 1100°C in air for up to 500 hr. The alloy displayed good cyclic oxidation resistance up to 1000°C, with little scale spallation. It, however, lost cyclic oxidation resistance during oxidation at 1100°C after about 200 hr, displaying large weight losses due to serious scale spallation. NiO, α-Al2O3, NiAl2O4 and ZrO2 were formed. The oxide scales consisted primarily of an outer Ni-rich layer which was prone to spallation, and (Al, Cr, Zr, Mo, Ni)-containing internal oxides which were adherent due mainly to the formation of (Al2O3, ZrO2)-containing oxides that keyed the oxide scale to the matrix alloy.  相似文献   

3.
The oxidation behaviour of dilute NiAl alloys at 800–1200°C in flowing oxygen at 1 atm pressure has been studied using kinetic measurements, optical and scanning electron microscopy and electron probe micro-analysis. The oxidation rates of Ni0.5 to 4%Al alloys are greater than the corresponding values for nickel at 1000 and 1200°C, but less at 800°C. The increased rates at the higher temperatures are largely due to increases in the total cation vacancy concentration in the scale, although internal oxide formation can make a significant contribution to the oxidation rate. The decreased rates at 800°C are almost certainly due to a build-up of Al2O3 particles at the oxide/alloy interface. The roles played in the oxidation processes by doping, internal oxidation, blocking effects in the oxide, dissociation of NiO and gaseous transport of oxygen within the scale are considered in detail and related to the oxidation rates of the various alloys.  相似文献   

4.
利用循环氧化法,研究了不同Si含量(0%,1%,3%,质量分数)的625合金熔覆层在700、800、900 ℃下氧化144 h后的高温氧化行为。用XRD分析了氧化物相。通过SEM/EDS研究了氧化物表面和截面的形貌、元素组成和氧化膜的厚度。结果表明,不同温度下试样的氧化动力学都保持抛物线规律,随着温度的升高,氧化增重逐渐增加。通过观察,在900 ℃时,0% Si含量的625合金熔覆层出现了氧化膜大面积剥落的情况,3% Si含量的合金熔覆层氧化膜保持完整。在700 ℃时,随着Si含量增加,氧化膜表面的氧化颗粒尺寸减小且更加致密,同时促进了Cr2O3氧化物的生成。在700 ℃下,0 % Si含量的试样出现了大片的内氧化区域;1% Si含量的试样基体部分出现了2处条状的含Ni,Cr,Mo的氧化物相区;而3% Si含量的试样氧化后由于生成了富Si的内氧化层,这阻止了内氧化的发生。外层Cr2O3氧化膜和内层SiO2的联合作用既阻止了O阴离子的渗入也抑制了Fe等金属离子的扩散,提高了合金熔覆层的抗氧化性。  相似文献   

5.
Hot-dip aluminizing and interdiffusion treatment were used to develop a TiAl3-rich coating on Ti–6Al–4V alloy. Interrupted oxidation at temperatures from 600 to 900 °C and isothermal oxidation at 700 and 800 °C of the coating were conducted. The coating markedly decreases the oxidation rate in comparison with the alloy at temperatures below 800 °C during the interrupted oxidation. The oxidation kinetics follows parabolic relations at 700 and 800 °C during the isothermal oxidation. A layered structure of Al2O3/TiAl3/TiAl2/TiAl/alloy from the outside to the inside forms after oxidation at 700 °C without changing the main body of the coating.  相似文献   

6.
The oxidation behavior of Ni, Ni–3Al, and Ni–6Al alloys at 800 °C in air + H2O was investigated. The oxidation kinetics of Ni and the alloys in air + H2O were very similar, but the mass gains of Ni and each alloy were smaller in air + H2O than in air. Oxidation products formed on Ni-3 and 6Al alloys consisted of an outer NiO scale and internal Al2O3 precipitates. The growth rates of both NiO and the internal oxidation zone were much smaller in air + H2O. The NiO scale formed in air + H2O was duplex in structure with outer porous and inner dense layers. The outer porous layer consisted of fine powder-like NiO particles. A thicker metallic Ni(Al) layer formed at the NiO/alloy interface in air + H2O, caused by extrusion of Ni from the substrate due to volume changes accompanying the internal oxide formation. Formation of the metallic Ni layer appeared to be the reason for the similarity between the oxidation kinetics of both Ni and the alloys in air + H2O.  相似文献   

7.
The oxidation of three Ni–xCr–10Al alloys with a constant Al content of 10 at% and containing 3, 5, and 10 at% Cr was investigated at 900–1000°C in 1 atm of pure oxygen and compared to the behavior of Ni–10Al. At both temperatures, an external NiO scale overlying a zone of internal-oxide precipitates formed on Ni–10Al and Ni–3Cr–10Al: in addition, a discontinuous Al2O3 layer formed at the front of the internal oxidation for Ni–3Cr–10Al. An exclusive external scale of Al2O3 formed at most places on Ni–5Cr–10Al at 900°C, while, at some sites, the same alloy formed an outer NiO layer overlying an internal oxidation zone. The scales formed on Ni–5Cr–10Al at 1000°C were complex, but eventually a protective Al2O3 layer developed either at the alloy surface or beneath a region containing a mixture of different oxides. Finally, an exclusive external Al2O3 layer formed on Ni–10Cr–10Al at both temperatures. Thus, the addition of sufficient chromium to Ni–10Al produced a classical third-element effect, inducing the transition between internal and external oxidation of aluminum under a constant Al content. A possible mechanism for the effect of chromium on the oxidation of Ni–10Al is discussed on the basis of an extension to ternary alloys of a criterion first proposed by Wagner for the transition between internal and external oxidation of the most-reactive component in binary alloys.  相似文献   

8.
The development of internal oxides and intergranular oxides in dilute NiCr alloys, containing 1–5% Cr, in NiNiO packs and in 1 atm oxygen at 800–1100°C has been investigated. The internal oxide particles were relatively coarse and widely spaced and were Cr2O3, except for a narrow band adjacent to the surface where NiCr2O4 particles were also present. Several types of intergranular oxide were developed in the Ni/NiO packs, with preferential penetration being more extensive in the higher chromium-containing alloys at the lower temperatures. Discrete intergranular oxide particles were formed deep in the alloy beneath bands of Cr2O3 which developed over intersections of the alloy grain boundaries with the surface, or beneath continuous or discontinuous grain-boundary oxides near the surface, possibly due to the development of a relatively flat oxygen profile and a steep chromium gradient in the subjacent alloy. In the presence of a thickening NiO external scale, preferential intergranular oxidation was much less extensive than in the Ni/NiO packs as the rapid growth of the scale prevented development of Cr2O3-rich surface bands.  相似文献   

9.
A Cr0.50Al0.50N coating has been prepared by a reactive-magnetron-sputtering method on alloy K38G. The coating possesses mainly the B1 type with a small amount of B4-type crystal structure phase. Isothermal oxidation tests were performed at 900–1,100 °C for 20 h by thermogravimetric analysis (TGA) in air. The results reveal that the coated samples have much lower mass gain than that of the bare alloy. The parabolic rate constants of the coated samples decrease by 2 orders of magnitude compared with the bare alloy at 1,000 and 1,100 °C. During the oxidation of the coated samples below 1,000 °C, the main oxide is Cr2O3, but above 1,000 °C, the scale changes to α-Al2O3. The observed oxidation behaviors demonstrate that the Cr0.50Al0.50N coating can provide good protection against corrosion over a wide temperature range.  相似文献   

10.
The gas atomized Ag-9.26wt%Sn-0.44wt%La alloy powders were oxidized in air between 400 and 900 °C. The oxidation thermodynamics, kinetics and microstructure of the alloy were investigated. We suggested that the addition of La may accelerate oxidation of Sn and prevent the formation of the dense SnO2 film. The suitable oxidation temperature of the alloy powders is 800 °C in air. After internal oxidation, many cracks were observed on the surface of the alloy powders. In addition, the whole oxidation process of the alloy powders is controlled by the oxygen diffusion. The diffusion coefficient of oxygen in the alloy powders at 800 °C is about 1.5 times larger than that at 700 °C on the initial stage of internal oxidation, while that is 4.5 times on the subsequent stage.  相似文献   

11.
The isothermal-oxidation behavior of Al-rich TiAl alloys containing Y up to 1.0 at.% was studied in synthetic air with a flow of 200–250 mL/min at 800 and 900°C. Oxidation kinetics and scale adherence were studied in terms of the morphological features and microstructural evolution of the oxide scale. In the specimens oxidized at 800°C, all alloys containing 0.3–1.0 at.%Y showed reduced mass gain compared to the Y-free alloy, especially for the 0.3 at.%Y alloy. Under isothermal exposure at 900°C, the addition of small amounts of Y (0.1 and 0.3 at.%) was effective in enhancing the oxidation resistance. The alloys with higher Y contents (0.6 and 1.0 at.%), on the contrary, had a reverse effect on the oxidation resistance by providing rapid diffusion paths in the form of coarse Y2O3 particles close to the substrate. The improvement of oxidation resistance of the alloy with Y additions was due partly to the improved adhesion of the scale and due partly to the formation of a continuous α-Al2O3 layer in the outer scale. Y segregation and/or Y2O3 precipitation at the oxide grain boundaries was effective in decreasing the oxidation rate and refining the oxide grains. The thinner scale was responsible for relaxing the thermal stress and, thus the cohesion between the scale and substrate was greatly improved in Y-containing alloys.  相似文献   

12.
A Ni-Cr-Co-Ti-V-Al high-entropy alloy (HEA) coating with a BCC phase and (Ni, Co)Ti2 compounds was synthesized successfully by laser surface alloying on a Ti-6Al-4V substrate. The microstructure of as-synthesized coatings is typical, namely, the microstructure from the coating to the substrate changes from equiaxed grains to columnar grains. After remaining at 900 °C for 8 h, the constituent phases remain unchanged. However, owing to the unceasing dissolution of the Ti element, the lattice parameter of the BCC HEA phase changes from 3.06 Å to 3.16 Å. The thermoanalysis results show that the oxidation film on the Ni-Cr-Co-Ti-V-Al HEA coating is mainly composed of TiO2, V2O5, and NiO. The oxidation resistance of this HEA coating may be due to the existence of NiO and the alloying elements Al, Cr, and Co; the oxidation phenomenon should be responsible for the mass increase in the thermogravimetry process. The differential scanning calorimetry and the dynamic differential scanning calorimetry curves show that the synthesized HEA coating is stable below 1005 °C.  相似文献   

13.
The oxidation behavior of the nickel-base single-crystal superalloy TMS-82+ coated with a duplex Re(W)–Cr–Ni/Ni(Cr)–Al layer was investigated in air at 1,150 °C for up to 100 h. The coating layer was formed by electroplating Re(Ni) and Ni(W) films on the alloy, followed by Cr-pack cementation at 1,300 °C, and as a result, forming a continuous Re(W)–Cr–Ni diffusion-barrier layer. A Ni film containing fine Zr particles was then electroplated on the duplex layer, followed by Al pack cementation at 1,000 °C for 1 and 5 h to form an Al reservoir layer with a duplex Ni2Al3/γ-Ni layer, which changed quickly to γ-Ni phase containing (10∼13)at.% Al for the 1 h Al-pack coat and a mixture of γ′-Ni3Al and β-NiAl phases for the 5 h Al-pack coat during high-temperature oxidation. A protective α-Al2O3 scale formed during oxidation at 1,150 °C in air, and parabolic rate constants of 7.4 × 10−11 and 6.6 × 10−10 kg2 m−4 s−1 were obtained for the 1 h- and 5 h-Al pack-coatings, respectively. There was little change in the structures of the superalloy substrate after oxidation at 1,150 °C in air for up to 100 h. It was found that the Re(W)–Cr–Ni layer remained stable, acting as a diffusion barrier between the alloy substrate and Al reservoir layers.  相似文献   

14.
A cobalt-based Phynox alloy was oxidized in the 800–1,100 °C temperature range. The alloy oxidation was consistent with a growth mechanism limited by the diffusion process in a growing Cr2O3 oxide scale. Water vapour enhanced the alloy oxidation rate and scale porosity. Thermal cycling tests at 900 and 1,000 °C showed that water vapour reduces the outer Mn1.5Cr1.5O4 subscale adherence, but the chromia scale adherence was not affected. These temperatures permited a rapid chromium supply from the substrate to form a continuous chromia scale. At 1,100 °C thermal cycling conditions led to scale spallation and chromium depletion in the alloy. In dry air, weight losses were recorded due to cobalt and molybdenum oxidation, giving CoCr2O4 and CoMoO4. In wet air, the initial porous chromia scale permited nickel and cobalt oxidation, leading to Ni5Co3O8 and CoCr2O4 formation and resulting in bad adherence during thermal cycling.  相似文献   

15.
A new TiAl–2Nb–2Mo beta gamma alloy was synthesized by powder metallurgy process. HIP’ed and vacuum heat treated specimens were isothermally oxidized at 800 °C and 900 °C in air up to 500 h. The TiAl–2Nb–2Mo alloy oxidized parabolically up to 500 h at both 800 °C and 900 °C. The oxides consisted of outer TiO2 layer, intermediate Al2O3 layer, and inner TiO2 rich mixed layer and the oxidation mechanisms of the alloy were identical at both temperatures. During oxidation, the degradation of lamellar colonies formed a diffusion zone just below the oxide/substrate interface consisting of γ-TiAl matrix and dispersed beta phases which contained high concentration of Nb and Mo. The oxidation rate of the TiAl–2Nb–2Mo alloy is more sensitive to temperature than those of the Ti–48Al–2Nb–2Cr and Ti–48Al–2Nb–2Cr–W alloys.  相似文献   

16.
The isothermal and cyclic oxidation behavior of Ti-47Al-2Mn-2Nb with 0.8 vol.% TiB2 particle-reinforced alloy was investigated in air between 700 and 1000 °C. In the study, the kinetics of isothermal and cyclic oxidation were performed by using a continuous thermogravimetric method which permits mass change measurement under oxidation conditions. The oxide scales and substrates were characterized by scanning electron microscopy with energy-dispersive x-ray analysis and x-ray diffraction. At 700 and 800 °C, the alloy showed an excellent oxidation resistance under isothermal and cyclic conditions. After exposure to air above 800 °C, the outer scale of the alloy was dominated by a fast-growing TiO2 layer. Under the coarse-grained TiO2 layer was the Al2O3-rich scale, which was fine-grained. At 900 and 1000 °C, the extent of oxidation increased clearly. The oxidation rate follows a parabolic law at 700 and 800 °C. However, the alloy, upon isothermal oxidation at 900 °C, can be divided into several stages. During the cyclic oxidation at 900 and 1000 °C, partial scale spallation takes place, leading to a stepwise mass change.  相似文献   

17.
The oxidation behaviour of nickel-vanadium alloys in air With oxidation tests carried out on pure nickel in air at 1000°C, a simple oxide film of NiO is formed. With the oxidation of nickel-vanadium alloys, however, several layers of different composition are formed. the outermost layer contains mainly NiO and a small content of nickel vanadate, Ni(VO3)2. Below it is a second oxide layer which has, on the outside, a strong concentration of vanadium. On the side facing the metal, this second layer has a low content of either metal, and is porous. This is followed by an inner oxidation zone which projects into the matrix in the form of conic islands with concentrations of V2O3. In the temperature range from 800 to 1200 °C, the scale constants indicating the reactions of the nickel-vanadium alloys are of an order of magnitude above that of unalloyed nickel. The oxidation reactions obey parabolic laws for the formation of the outer NiO layers with nickel and of NiO and Ni(VO3)2 with the nickel-vanadium alloys. The growth of the inner oxidation zones is governed by a logarithmic law. The activation energy of the oxidation in air, for nickel and for the nickel-vanadium alloys investigated, is of the order of magnitude of 50kcal/Mol.  相似文献   

18.
γ-NiCrAl alloys with relatively low Al contents tend to form a layered oxide scale during the early stages of oxidation, rather than an exclusive α-Al2O3 scale, the so-called “thermally grown oxide” (TGO). A layered oxide scale was established on a model γ-Ni–28Cr–11Al (at.%) alloy after isothermal oxidation for several minutes at 1100°C. The layered scale consisted of an NiO layer at the oxide/gas interface, an inner Cr2O3 layer, and an α-Al2O3 layer at the oxide/alloy interface. The evolution of such an NiO/Cr2O3/Al2O3 layered structure on this alloy differs from that proposed in earlier work. During heating, a Cr2O3 outer layer and a discontinuous inner layer of Al2O3 initially formed, with metallic Ni particles dispersed between the two layers. A rapid transformation occurred in the scale shortly after the sample reached maximum temperature (1100°C), when two (possibly coupled) phenomena occurred: (i) the inner transition alumina transformed to α-Al2O3, and (ii) Ni particles oxidized to form the outer NiO layer. Subsequently, NiO reacted with Cr2O3 and Al2O3 to form spinel. Continued growth of the oxide scale and development of the TGO was dominated by growth of the inner α-Al2O3 layer.  相似文献   

19.
The goal of this paper was to determine if NiO-forming alloys are a viable alternative to Cr2O3-forming alloys for solid-oxide fuel-cell (SOFC) metallic interconnects. The oxide-scale growth kinetics and electrical properties of a series of Li- and Y2O3-alloyed, NiO-forming Ni-base alloys and La-, Mn-, and Ti-alloyed Fe–18Cr–9W and Fe–25Cr base ferritic Cr2O3-forming alloys were evaluated. The addition of Y2O3 and Li reduced the NiO scale growth rate and increased its electrical conductivity. The area-specific-resistance (ASR) values were comparable to those of the best (lowest ASR) ferritic alloys examined. Oxidation of the ferritic alloys at 800°C in air and air+10% H2O (water vapor) indicated that Mn additions resulted in faster oxidation kinetics/thicker oxide scales, but also lower oxide scale ASRs. Relative in-cell performance in model SOFC stacks operated at 850°C indicated a 60–80% reduction in ASR by Ni+Y2O3, Ni+Y2O3, Li, and Fe–25Cr+La,Mn,Ti interconnects over those made from a baseline, commercial Cr2O3-forming alloy. Collectively, these results indicate that NiO-forming alloys show potential for use as metallic interconnects.  相似文献   

20.
Microscale Fe-P alloy was prepared using Ca3(PO4)2 and Fe2O3 in an electrothermal reduction process, and the electrochemical performance was investigated in detail. The initial discharge capacity could reach ∼566.8 mAh/g at 0.3 C rate, and the fade trend was so slight that the normalized capacities from 1.0 to 2.0 C rate were adjacent. The energy density and the power density could reach ∼1133.6 Wh/kg and ∼912.4 W/kg, respectively. The rate capability and the cycle performance were comparable to those of the Fe-P alloy synthesized using zerovalent iron and phosphorus. At 0.5 mV/s scan rate, the oxidation peak and the reduction peak for the reaction of lithium ions with P were positioned at ∼1.3 and ∼0.5 V, respectively. The reaction occurred under diffusion control, and the lithium ion diffusion efficient was ∼1.5×10−9 cm2/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号