首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of alpha(1C-)b-subunit than of alpha(1C-a)-subunit. This difference was more marked at a holding potential of -100 mV than at -50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms. 4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on alpha(1C-a) than on alpha(1C-b) subunit at Vh of -100 mV and -50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages. 5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the alpha(1C-b) than for the alpha(1C-a) subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the alpha(1C-a) subunit than for the alpha(1C-b) subunit. 6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the alpha(1C-a) and alpha(1C-b) subunits of the Ca2+ channel.  相似文献   

2.
OBJECTIVES: The aim of this study was to determine the effects of Cl- channel blockers on the cardiac cystic fibrosis transmembrane conductance regulator (CFTR) Cl- current (ICl) and the protein kinase A-regulated L-type calcium current (PKA-ICa). METHODS: Whole-cell ICl and ICa were recorded from isolated guinea pig ventricular myocytes using the patch clamp technique during stimulation of PKA by forskolin (1 or 2 microM). RESULTS: The inhibitory effects of clofibric acid, p-chlorophenoxy propionic acid, gemfibrozil, diphenylamine-2-carboxylate (DPC), anthracene-9-carboxylate, 4,4'dinitrostilbene-2,2'-disulfonic acid and indanyloxyacetic acid 94 were examined on the two currents. Clofibric acid (1 mM), p-chlorophenoxy propionic acid (1 mM) and gemfibrozil (250 microM) produced an approximate 50% decrease in ICl, but had no effect on the PKA-ICa. Surprisingly, application of DPC (500 microM and 1 mM) and anthracene-9-carboxylate (500 microM) strongly reduced both currents. However, inhibition of the Ca2+ and Cl- channels by DPC could be differentiated in two important ways. First, increasing the pH of the external solution from 7.4 to 10.0 prevented the block of ICl by DPC, but did not attenuate the reduction in the PKA-ICa. Second, DPC inhibited the PKA-ICa in mouse atrial myocytes which lacked ICl. Neither 4,4'dinitrostilbene-2,2'-disulfonic acid (100 microM) nor indanyloxyacetic acid 94 (50 microM) caused any change in either of the guinea pig ventricular currents. CONCLUSIONS: Drugs such as DPC and anthracene-9-carboxylate which block the cardiac CFTR Cl- channel also inhibit the regulation of the L-type ICa. During beta-adrenergic stimulation, changes produced by these drugs on the cardiac action potential duration will be attributable to inhibition of both the Cl- and Ca2+ currents. Analogues of clofibric acid may serve as selective blockers of the CFTR Cl- channel that can be used to determine the physiological function of ICl in cardiac excitation.  相似文献   

3.
The principal (alpha 1) subunit of purified skeletal muscle dihydropyridine-sensitive (L-type) calcium channels is present in full-length (212 kDa) and COOH-terminal truncated (190 kDa) forms, which are both phosphorylated by cAMP-dependent protein kinase (cA-PK) in vitro. Immunoprecipitation of the calcium channel from rabbit muscle myotubes in primary cell culture followed by phosphorylation with cA-PK, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two-dimensional phosphopeptide mapping revealed comparable phosphorylation of three COOH-terminal phosphopeptides found in the purified full-length alpha 1 subunit. Stimulation of muscle myotubes with a permeant cAMP analogue, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate, prior to immunoprecipitation of alpha 1 results in a 60-80% reduction of cA-PK catalyzed "back" phosphorylation of each of these sites in vitro in calcium channels purified from the cells, indicating that these sites are phosphorylated in vivo in response to increased intracellular cAMP. Serine 687, the most rapidly phosphorylated site in the truncated 190-kDa alpha 1 subunit, was observed as a minor phosphopeptide whose level of phosphorylation was not significantly affected by stimulation of endogenous cA-PK in the myotubes. The COOH-terminal sites, designated tryptic phosphopeptides 4, 5, and 6, were identified as serine 1757 (phosphopeptides 4 and 6) and 1854 (phosphopeptide 5) by a combination of protease cleavage, phosphorylation of synthetic peptides and fusion proteins, specific immunoprecipitation, and phosphopeptide mapping. Phosphorylation of serines 1757 and 1854 in the COOH-terminal region of the 212-kDa alpha 1 subunit in intact skeletal muscle cells may play a pivotal role in the regulation of calcium channel function by cA-PK.  相似文献   

4.
Pharmacological modulation by 1,4-dihydropyridines is a central feature of L-type calcium channels. Recently, eight L-type amino acid residues in transmembrane segments IIIS5, IIIS6, and IVS6 of the calcium channel alpha1 subunit were identified to substantially contribute to 1,4-dihydropyridine sensitivity. To determine whether these eight L-type residues (Thr1066, Gln1070, Ile1180, Ile1183, Tyr1490, Met1491, Ile1497, and Ile1498; alpha1C-a numbering) are sufficient to form a high affinity 1,4-dihydropyridine binding site in a non-L-type calcium channel, we transferred them to the 1, 4-dihydropyridine-insensitive alpha1A subunit using site-directed mutagenesis. 1,4-Dihydropyridine agonist and antagonist modulation of barium inward currents mediated by the mutant alpha1A subunits, coexpressed with alpha2delta and beta1a subunits in Xenopus laevis oocytes, was investigated with the two-microelectrode voltage clamp technique. The resulting mutant alpha1A-DHPi displayed low sensitivity for 1,4-dihydropyridines. Analysis of the 1,4-dihydropyridine binding region of an ancestral L-type alpha1 subunit previously cloned from Musca domestica body wall muscle led to the identification of Met1188 (alpha1C-a numbering) as an additional critical constituent of the L-type 1,4-dihydropyridine binding domain. The introduction of this residue into alpha1A-DHPi restored full sensitivity for 1,4-dihydropyridines. It also transferred functional properties considered hallmarks of 1, 4-dihydropyridine agonist and antagonist effects (i.e. stereoselectivity, voltage dependence of drug modulation, and agonist-induced shift in the voltage-dependence of activation). Our gain-of-function mutants provide an excellent model for future studies of the structure-activity relationship of 1, 4-dihydropyridines to obtain critical structural information for the development of drugs for neuronal, non-L-type calcium channels.  相似文献   

5.
Secretion from dense-core vesicles is reputedly much slower than that from typical synaptic vesicles, possibly because of noncolocalization of Ca channels and release sites. We reinvestigated this question by measuring the kinetics of catecholamine release in chromaffin cells from calf and adult bovines. Amperometric recording from calf chromaffin cells stimulated by action potentials exhibited two latencies of secretion that depended on both the frequency of stimulation and the pathway of Ca entry. Short-latency responses (<25 msec delay; "strongly coupled") appeared at low (0.25 and 1 Hz) and high (7 Hz) frequencies and were entirely dependent on recruitment of "facilitation" L-type Ca channels as revealed by nisoldipine blockade. Long-latency responses (>25 msec delay; "weakly coupled") were more apparent at higher frequencies (7 Hz) and were substantially reduced by toxins that blocked N- and P-type Ca channels. Ca current recordings revealed that adult bovine chromaffin cells lack facilitation channels; virtually all secretion was weakly coupled in these cells. The mean delay of the strongly coupled signal was approximately 3 msec after the peak of the action potential (at 24 degreesC), indicating that dense-core vesicles can exhibit a rate of exocytosis approaching that occurring in neurons. Although other explanations are possible, these results are consistent with the idea that facilitation Ca channels are colocalized with release sites in calf chromaffin cells. Calculations based on a model incorporating this assumption suggest that these channels must be within 13 nm of secretory sites to account for such rapid exocytosis.  相似文献   

6.
Carnitine is an essential component for mitochondrial beta-oxidation of fatty acid. Using the degenerate primers designed for organic anion transporters and an organic cation transporter, we isolated a novel cDNA encoding a carnitine transporter (CT1) from rat intestine. CT1 encodes a 557-amino-acid protein with 12 putative membrane-spanning domains. When expressed in Xenopus oocytes, CT1 mediated a high-affinity transport of L-carnitine (Km = 25 microM). The replacement of extracellular sodium with Li reduced CT1-mediated L-carnitine uptake to 19.8%. CT1 did not transport typical substrates for either organic anion or organic cation transporters, such as p-aminohippurate and tetraethylammonium. Octanoylcarnitine, acetylcarnitine, and gamma-butyrobetaine showed potent inhibitory effects on CT1-mediated L-carnitine uptake; betaine and d-carnitine showed moderate inhibition. CT1 mRNA was strongly expressed in the testis, colon, kidney, and liver and weakly in the skeletal muscle, placenta, small intestine, and brain. No CT1 expression was detected in the heart, spleen, or lung. The present study provides the molecular basis of carnitine transport in the body.  相似文献   

7.
Damage to the spinal cord in course of the treatment of diseases of the infrarenal aorta is a rare but calamitous complication. The reported incidence is about 0.2%. The neurological loss is usually complete flaccid paraplegia with high mortality and rare full or partial recovery. Between 1980 and 1991, 1070 reconstructive procedures of the infrarenal aorta were performed: 821 due to aneurysm (316 elective procedures [mortality 1.6%] and 505 emergency procedures [mortality 24.5%]) and 249 due to aorto-iliac occlusive disease. Damage to the spinal cord occurred in 2 patients (2/1070, 0.19%). One patient had incomplete paraparesis following repair of an unruptured abdominal aortic aneurysm with gradual return of all neurological symptoms to normal. The second patient developed complete paraplegia following repair of a ruptured infrarenal aneurysm. There war no recovery of the symptoms. The patient died from septicaemia 4 months later.  相似文献   

8.
CONCLUSIONS: Intra-arterial infusion chemotherapy via the celiac axis combined with external beam radiotherapy might be an effective method for palliative and perioperative multimodal treatment in pancreatic cancer. To improve the dismal prognosis in resectable and nonresectable pancreatic cancer, the results of multimodal palliative, adjuvant, and neoadjuvant therapies were reviewed and put into perspective with the results of two intra-arterial palliative and adjuvant treatment studies conducted at our department. The benefits and pitfalls of each method were outweighed, resulting in a concept for performing intra-arterial chemotherapy with radiotherapy in nonresectable stage UICC-III pancreatic cancer that eventually will be developed as a combined neoadjuvant/adjuvant treatment of all potentially resectable ductal pancreatic carcinomas.  相似文献   

9.
We investigated the nature and structural requirements for Ca(2+)-dependent inactivation of cardiac L-type Ca2+ channel. Investigation of subunit requirements indicates that the interaction of alpha 1 subunit with ancillary subunits, especially beta subunit, is important for this property. Replacement of the putative cytoplasmic regions of the cardiac alpha 1 subunit with skeletal muscle counterparts eliminates Ca(2+)-dependent inactivation, indicating that the site regulated by Ca2+ resides in the cytoplasmic region of the alpha 1 subunit. Deletion of the carboxy-terminal region of the cardiac alpha 1 subunit does not eliminate this property, suggesting that the modulation by protein kinase A may not be involved in this mechanism. Single amino acid substitution that strongly reduces Ca2+ selectivity of Ca2+ channels also eliminates Ca(2+)-dependent inactivation, suggesting the close link between the ion selectivity and Ca(2+)-dependent inactivation.  相似文献   

10.
Sequence database searches with the alpha2delta subunit as probe led to the identification of two new genes encoding proteins with the essential properties of this calcium channel subunit. Primary structure comparisons revealed that the novel alpha2delta-2 and alpha2delta-3 subunits share 55.6 and 30.3% identity with the alpha2delta-1 subunit, respectively. The number of putative glycosylation sites and cysteine residues, hydropathicity profiles, and electrophysiological character of the alpha2delta-3 subunit indicates that these proteins are functional calcium channel subunits. Coexpression of alpha2delta-3 with alpha1C and cardiac beta2a or alpha1E and beta3 subunits shifted the voltage dependence of channel activation and inactivation in a hyperpolarizing direction and accelerated the kinetics of current inactivation. The kinetics of current activation were altered only when alpha2delta-1 or alpha2delta-3 was expressed with alpha1C. The effects of alpha2delta-3 on alpha1C but not alpha1E are indistinguishable from the effects of alpha2delta-1. Using Northern blot analysis, it was shown that alpha2delta-3 is expressed exclusively in brain, whereas alpha2delta-2 is found in several tissues. In situ hybridization of mouse brain sections showed mRNA expression of alpha2delta-1 and alpha2delta-3 in the hippocampus, cerebellum, and cortex, with alpha2delta-1 strongly detected in the olfactory bulb and alpha2delta-3 in the caudate putamen.  相似文献   

11.
We have used pairs of cardiac cells (i.e., one real guinea pig ventricular cell and a real-time simulation of a numerical model of a guinea pig ventricular cell) to evaluate the effects on action potential conduction of a variable coupling conductance in combination with agents that either increase or decrease the magnitude of the L-type calcium current. For the cell pairs studied, we applied a direct repetitive stimulation to the real cell, making it the "leader" cell of the cell pair. We have demonstrated that significant delays in action potential conduction for a cell pair can occur either with a decreased value of coupling conductance or with an asymmetry in size such that the follower cell is larger than the leader cell. In both conditions we have shown that isoproterenol, applied to the real cell at very low concentrations, can reversibly decrease the critical coupling conductance (below which action potential conduction fails) for a cell pair with fixed cell sizes, or, for a fixed value of coupling conductance, increase the maximum allowable asymmetry in cell size for successful conduction. For either of these effects, we were able to show that treatment of the real cell with BayK 8644, which more specifically increases the magnitude of the L-type calcium current, was able to mimic the actions of isoproterenol. Treatment of the leader cell of the cell pair (the real cell) with nifedipine, which selectively lowers the magnitude of the L-type calcium current, had effects opposite those of isoproterenol or BayK 8644. The actions of nifedipine, isoproterenol, and BayK 8644 are all limited to conditions in which the conduction delay is on the order of 5 ms or more, whether this delay is caused by limited coupling conductance or by asymmetry in size of the cells. This limitation is consistent with the time course of the L-type calcium current and suggests that the effects of calcium channel blockers or beta-adrenergic blocking drugs, in addition to being selective for regions of the heart that depend on the L-type calcium current for the upstroke of the action potential, would also be somewhat selective for regions of the heart that have discontinuous conduction, either normally or because of some pathological condition.  相似文献   

12.
Cardiac inotropic effects of beta adrenergic agonists occur mainly through an increase in L-type (class C) calcium channel activity. This response has been attributed to phosphorylation of the L-type Ca channel, or a closely associated protein, by the cAMP-dependent protein kinase A (PKA). Among the three subunits forming the cardiac L-type Ca channel (alpha 1, beta and alpha 2-delta), biochemical studies have revealed that two subunits, alpha 1 and beta, are phosphorylated in vitro by protein kinase A, the alpha 1 subunit being the primary target. However, attempts to reconstitute the cAMP-dependent regulation of the expressed class C Ca channel, either in Xenopus oocytes or in cell lines, have provided contradictory results. We were unable to detect cAMP-dependent modulation of class C alpha 1 subunit Ca channels expressed in Xenopus oocytes, even when coinjected with auxiliary subunits beta and alpha 2-delta. Nevertheless, activity of Ca channels recorded from cardiac-mRNA injected oocytes was potentiated by injection of cAMP or PKA, even when expression of the beta subunit was suppressed using antisense oligonucleotide. Taken together, these results indicate that cAMP-dependent regulation does not exclusively involve the alpha 1 and the beta subunits of the Ca channel and suggest that unidentified protein(s), expressed in cardiac tissue, are most likely necessary.  相似文献   

13.
Unique ATP-inhibitable K+ channels (KATP) in the kidney determine the rate of urinary K+ excretion and play an essential role in extracellular K+ balance. Here, we demonstrate that functionally similar low sulfonylurea affinity KATP channels are formed by two heterologous molecules, products of Kir1.1a and cystic fibrosis transmembrane conductance regulator (CFTR) genes. Co-injection of CFTR and Kir1.1a cRNA into Xenopus oocytes lead to the expression of K+ selective channels that retained the high open probability behavior of Kir1.1a but acquired sulfonylurea sensitivity and ATP-dependent gating properties. Similar to the KATP channels in the kidney but different from KATP channels in excitable tissues, the Kir1.1a/CFTR channel was inhibited by glibenclamide with micromolar affinity. Since the expression of Kir1.1a and CFTR overlap at sites in the kidney where the low sulfonylurea affinity KATP are expressed, our study offers evidence that these native KATP channels are comprised of Kir1.1a and CFTR. The implication that Kir subunits can interact with ABC proteins beyond the subfamily of sulfonylurea receptors provides an intriguing explanation for functional diversity in KATP channels.  相似文献   

14.
1. To determine the contribution of the various phosphodiesterase (PDE) isozymes to the regulation of the L-type calcium current (ICa(L)) in the human myocardium, we investigated the effect of selective and non-selective PDE inhibitors on ICa(L) in single human atrial cells by use of the whole-cell patch-clamp method. We repeated some experiments in rabbit atrial myocytes, to make a species comparison. 2. In human atrial cells, 100 microM pimobendan increased ICa(L) (evoked by depolarization to +10 mV from a holding potential of -40 mV) by 250.4 +/- 45.0% (n = 15), with the concentration for half-maximal stimulation (EC50) being 1.13 microM. ICa(L) was increased by 100 microM UD-CG 212 by 174.5 +/- 30.2% (n = 10) with an EC50 value of 1.78 microM in human atrial cells. These two agents inhibit PDE III selectively. 3. A selective PDE IV inhibitor, rolipram (1-100 microM), did not itself affect ICa(L) in human atrial cells. However, 100 microM rolipram significantly enhanced the effect of 100 microM UD-CG 212 on ICa(L) (increase with UD-CG 212 alone, 167.9 +/- 33.9, n = 5; increase with the two agents together, 270.0 +/- 52.2%; n = 5, P < 0.05). Rolipram also enhanced isoprenaline (5 nM)-stimulated ICa(L) by 52.9 +/- 9.3% (n = 5) in human atrial cells. 4. In rabbit atrial cells, ICa(L) at +10 mV was increased by 22.1 +/- 9.0% by UD-CG 212 (n = 10) and by 67.4 +/- 12.0% (n = 10) by pimobendan (each at 100 microM). These values were significantly lower than those obtained in human atrial cells (P < 0.0001). Rolipram (1-100 microM) did not itself affect ICa(L) in rabbit atrial cells. However, ICa(L) was increased by 215.7 +/- 65.2% (n = 10) by the combination of 100 microM UD-CG 212 and 100 microM rolipram. This value was almost 10 times larger than that obtained for the effect of 100 microM UD-CG 212 alone. 5. These results imply a species difference: in the human atrium, the PDE III isoform seems dominant, whereas PDE IV may be more important in the rabbit atrium for regulating ICa(L). However, PDE IV might contribute significantly to the regulation of intracellular cyclic AMP in human myocardium when PDE III is already inhibited or when the myocardium is under beta-adrenoceptor-mediated stimulation.  相似文献   

15.
INTRODUCTION: Lowering temperature greatly reduces calcium influx through calcium channels. Studies on a number of tissues demonstrate that the peak inward current, ICa, exhibits Q10 values ranging from 1.8 to 3.5; however, it remains unclear which component(s) of calcium channel gating may give rise to this large temperature sensitivity. Components of gating that may affect channel availability include phosphorylation and changes in [Ca2+]i, processes that vary in pertinence depending on the channel examined. This study addresses this problem by examining the temperature sensitivity (from 34 degrees to 14 degrees C) of cardiac ICa under control conditions, during attenuation or activation of protein kinase A (PKA) activity, and when intracellular [Ca2+] has been elevated. METHODS AND RESULTS: ICa was studied using the whole cell configuration of the patch champ technique. In control, lowering temperature from 34 degrees to 24 degrees C resulted in a shift in the potential for maximum slope (Va) and the peak current (Ymax) toward more positive membrane potentials. The Q10 values for the decrease in Ymax and the macroscopic slope conductance (Gmax), which reflects the number of available channels, were 3.15 +/- 0.19 and 2.57 +/- 0.13, respectively. At 0 mV the Ca2+ current decayed biexponentially, and the two time constants (tau 1 and tau 2) showed Q10 values of 1.79 +/- 0.21 and 2.06 +/- 0.38, while their contribution to the total current (I1 and I2) showed a Q10 of 5.99 +/- 0.83 and 1.61 +/- 0.22. In myocytes loaded with inhibitors of the PKA cycle sufficient to inhibit the increase of ICa to 1 microM isoprenaline, the Q10 values for some of the kinetic parameters were increased with the Q10 for I1 increasing to 17.06 +/- 3.48. Stimulation of ICa by exposing myocytes to 1 microM isoprenaline reduced the temperature sensitivity of Ymax, Gmax and I1, yielding respective values of 2.00 +/- 0.18, 1.85 +/- 0.07, and 2.04 +/- 0.15. Raising [Ca2+]i to enhance Ca2+i-dependent inactivation, while affecting inactivation and activation kinetics, affected temperature sensitivity little compared to control. The Q10 for time to peak changed little under experimental conditions (2.3 to 2.4) CONCLUSIONS: Increasing the phosphorylated states of calcium channels, but not Ca2+i-dependent inactivation, reduces temperature sensitivity of certain gating parameters. The data suggest that the rate of the transitions between the unavailable and also between the various closed states are changed in the opposite direction to that induced by PKA-dependent phosphorylation. Processes, e.g., inhibitory mechanisms, may be involved to maintain channels in unavailable or "unphosphorylated" states, and it may be these that contribute to the high Q10 of macroscopic channel currents.  相似文献   

16.
Plant cell wall polysaccharides are primarily composed of hexose or hexose derivatives, but a significant fraction is hemicellulose which contains pentose sugars. Prevotella ruminicola B14, a predominant ruminal bacterium, simultaneously metabolized pentoses and glucose or maltose, but the organism preferentially fermented pentoses over cellobiose and preferred xylose to sucrose. Xylose and arabinose transport at either low (2 microM) or high (1 mM) substrate concentrations were observed only in the presence of sodium and if oxygen was excluded during the harvest and assay procedures. An artificial electrical potential (delta psi) or chemical gradient of sodium (delta pNa) drove transport in anaerobically prepared membrane vesicles. Because (i) transport was electrogenic, (ii) a delta pNa drove uptake, and (iii) the number of sodium binding sites was approximately 1, it appeared that P. ruminicola possessed pentose/sodium support mechanisms for the transport of arabinose and xylose at low substrate concentrations. Pentose uptake exhibited a low affinity for xylose or arabinose (> 300 microM), and transport of xylose exhibited bi-phasic kinetics which suggested that a second sodium-dependent xylose transport system was present. Little study has been made on solute transport by Prevotella (Bacteroides) species and this work represents the first use of isolated membrane vesicles from these organisms.  相似文献   

17.
In cardiac ventricular myocytes, membrane depolarization leads to the inactivation of the Na channel and Ca channel ionic currents. The inactivation of the ionic currents has been associated with a reduction of the gating charge movement ("immobilization") which governs the activation of Na channels and Ca channels. The nature of the apparent "immobilization" of the charge movement following depolarization was explored in embryonic chick ventricular myocytes using voltage protocols applied from depolarized holding potentials. It was found that although all of the charge was mobile following inactivation, the voltage dependence of its movement was shifted to more negative potentials. In addition, the shift in the distribution of the Na channel charge could be differentiated from that of the Ca channel charge on the basis of kinetic as well as steady-state criteria. These results suggest that the voltage-dependent activation of Na channel and Ca channel charge movements leads to conformational changes and charge rearrangements that differentially bias the movements of these voltage sensors, and concomitantly produce channel inactivation.  相似文献   

18.
The fetus must transport considerable and increasing amounts of calcium across the placental trophoblast epithelium to support growth and development and bone formation. Active calcium transport across epithelia has been shown to correlate with calbindin D9k or 28k content. This study examined the distribution of calbindin D9k (9CBP) protein and mRNA during pregnancy in the bovine placenta to determine its possible role in calcium transport in this system. The immunocytochemical results show 9CBP in an increasing percentage of interplacentomal uninucleate trophoblast cells until, at term, all show a level at least eight times that of any other placental cell. There is a similar, although smaller, rise in their 9CBP mRNA content. The mature interplacentomal binucleate cell ( approximately 5% of the total) contains no 9CBP at any stage of pregnancy. In interplacentomal uterine epithelium, 9CBP protein and mRNA decrease to zero in late pregnancy but the glands maintain constant low levels throughout. In the placentome trophoblast, uninucleate cells show insignificant amounts but binucleate cells (15-20% of the total trophoblast cells) contain considerable levels of both 9CBP protein and mRNA, as do all the uninucleate uterine epithelial cells. The placentomal binucleate cells show peak values at mid-pregnancy; the placentomal uterine epithelium shows only small changes in levels in the second half of pregnancy. Increase in fetal calcium demand in the second half of pregnancy therefore correlates with a major increase in 9CBP only in the interplacentomal trophoblast, as we have also shown in the sheep and goat, indicating an important role for this region in active calcium transport by the ruminant placenta. The 9CBP is distributed uniformly in the cytosol and nucleoplasm, supporting a role in facilitated diffusion of calcium through the cell rather than a vesicular shuttle system.  相似文献   

19.
The voltage-sensitive Na+ channel is responsible for generating action potentials in the heart which are critical for coordinated cardiac muscle contraction. Cardiac Na+ channels are regulated by cAMP-dependent phosphorylation, but the sites of phosphorylation are not known. Using mammalian cells expressing the rat cardiac Na+ channel (rH1) alpha subunit and site-specific antibodies, we have shown that the alpha subunit of rat heart Na+ channel is phosphorylated selectively by cAMP-dependent protein kinase (PKA) in vitro and in intact cells. Analysis of the sites of phosphorylation by two-dimensional phosphopeptide mapping and site-directed mutagenesis of fusion proteins revealed that the cardiac alpha subunit is phosphorylated selectively in vitro by PKA on Ser526 and Ser529 in the intracellular loop connecting homologous domains I and II (LI-II). These two residues were phosphorylated in intact cells expressing the rH1 alpha subunit when PKA was activated. Our results define a different pattern of phosphorylation of LI-II of cardiac and brain Na+ channels and implicate phosphorylation of Ser526 and Ser529 in the differential regulation of cardiac and brain Na+ channels by PKA.  相似文献   

20.
L-Type voltage operated calcium channel plays an important role in the contraction-relaxation of muscle cells. The alpha-1 subunit of this pentameric protein performs catalytic functions. Multiple mRNA isoforms of this subunit are generated by alternative splicing. For example, an exon encoding 11 amino acids (aa) between the third and fourth transmembrane domains produces two mRNA isoforms in gastrointestinal (GI) tract. The corresponding exon in brain encodes 15 aa. Whether the alpha-1 mRNA isoforms are translated into the corresponding isozymes remain unknown. To address this issue and to characterize the exon in brain, isozymes specific anti-peptide polyclonal antibodies were raised. Both the antibodies reacted with a protein of Mr 180 kDa in the heart and GI-tract, while no reaction was obtained in the kidney or liver. Brain expressed the isoform containing the same exon encoding 11 amino acids present in GI-tract, but the corresponding isozymes were of Mr 145-150 kDa. These findings suggest a tissue-specific translation of the alpha-1 isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号